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Abstract 

By now Artificial Intelligence (AI), Theoretical Computer Science (CS theory) and Opera- 
tions Research (OR) have investigated a variety of search and optimization problems. However, 
methods from these scientific areas use different problem descriptions, models, and tools. They 
also address problems with particular efficiency requirements. For example, approaches from 
CS theory are mainly concerned with the worst-case scenarios and are not focused on empirical 
performance. A few efforts have tried to apply methods across areas. Usually a significant 
amount of work is required to make different approaches "talk the same language," be suc- 
cessfully implemented, and, finally, solve the actual same problem with an overall acceptable 
efficiency. 

This thesis presents a systematic approach that attempts to advance the state of the art in the 
transfer of knowledge across the above mentioned areas. In this work we investigate a number 
of problems that belong to or are close to the intersection of areas of interest of AI, OR and CS 
theory. We illustrate the advantages of considering knowledge available in different scientific 
areas and of applying algorthms across distinct disciplines through successful applications of 
novel hybrid algorithms that utilize benefitial features of known efficient approaches. Testbeds 
for such applications in this thesis work include both open theoretical problems and ones of 
significant practical importance. 

We introduce a representation change that enables us to question the relation between the 
Pigeonhole Principle and Linear Programming Relaxation. We show that both methods have 
exactly the same bounding power. Furthermore, even stronger relation appears to be between 
the two methods: The Pigeonhole Principle is the Dual of Linear Programming Relaxation. 
Such a relation explains the "hidden magic" of the Pigeonhole Principle, namely its power in 
establishing upper bounds and its effectiveness in constructing optimal solutions. 

We also address various groups of problems, that arise in agent-centered search. In particu- 
lar, we consider goal-directed exploration, in which search by a physical or fictitious agent with 
limited lookahead occurs in partially or completely unknown domains. The resulting Variable 
Edge Cost Algorithm (VECA) becomes the first method of solving goal-directed exploration 
problems that incorporates strong guidance from heuristic knowledge, yet is still capable 
of providing linear worst-case guarantees, even for complex search domains and misleading 
heuristics. 

This work aims at expanding the handset of AI tools that concern search efficiency and 
provides the foundation for further development of hybrid methods, cross-fertilization and 
successful applications across AI, CS theory, OR and other Computational Sciences. 
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Chapter 1 

Introduction 

From the very first days, Artificial Intelligence (AI) experienced rapid growth and development. 
On its earlier stages, AI heavily relied on ideas and techniques from other areas including 
Mathematics, Psychology, and Biology. Although AI continued incorporating and interpreting 
knowledge from other scientific disciplines that were developed in parallel with it, such as 
Operations Research (OR), Theoretical Computer Science (CS theory), Statistics, etc., AI was 
especially active and successful in building its own models, tools for attacking and efficient 
methods of solving its problems. 

"Re-utilization" of the existing knowledge, cross-applications of already developed methods 
to new problems and hybrid solutions have been always considered as the first thing to do for 
novel problems. It usually takes longer time to develop independent methods with fresh ideas 
tailored towards solving newly stated problems. It is especially hard to come up with efficient 
methods, when the problem instances are real-world complex AI domains. Furthermore, AI 
seems to be concerned with a wide variety of aspects - from employing Linear Programming 
techniques that is traditionally considered as the territory of Operations Research, to analyzing 
worst-case scenarios that is usually attributed to CS theory, to acquiring prior knowledge and 
building heuristic-guided algorithms. Thus, hybrid solutions with a variable mix of algorithms 
from different scientific areas is a natural approach in solving AI problems. 

However, it takes a certain amount of modeling effort to state a realistic problem in the form 
amenable to specific methods from particular areas of Science. Usually such a reduction implies 
some sort of simplification, as the result, the derived solutions are only the approximations of 
the realistic processes. Nonetheless, more and more often such approximations are very close 
to the processes they model and serve as good indications of the expected results. In this 
thesis work we discuss a wide variety of traditional and untraditional models and methods 
from different scientific areas with the emphasize on AI, OR and CS theory. We hope that 
the adequacy of the problem representation is reflected in the variety of considered areas and 
methods. 

1 
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There has been a noticeable raise of interest recently to hybrid solutions and cross- 
applications of the most efficient methods from various scientific areas to practical AI problems. 
In particular, several recent efforts have tried to merge methods of OR, CS theory and AI. These 
efforts indicate that it is challenging to identify and compare the strengths of existing approaches 
from different areas, to attempt to combine them in a single, hybrid method in order to extract 
the best from many worlds. However, methods from the above mentioned scientific areas use 
different problem descriptions, models and tools. They also address problems with particular 
efficiency requirements. For example, algorithms from CS theory are mainly concerned with 
the worst-case scenarios and are not focused on empirical performance. Usually a significant 
amount of work is required to make different approaches "talk the same language," be suc- 
cessfully implemented, and, finally, solve the actual same problem with an overall acceptable 
efficiency. 

This thesis constitutes a systematic approach that attempts to advance the state of the art in the 
transfer of knowledge across the above mentioned areas. In this work we investigate a number 
of problems that belong to or are close to the intersection of areas of interest of AI, OR and 
CS theory. Hybrid approaches developed in the thesis work, are illustrated through successful 
applications to several groups of problems that include both open theoretical problems and ones 
of practical importance. In each case, we demonstrate how the representation of each specific 
group of problems can be changed to create a multi-linguistic environment, so that methods 
from distinct scientific areas can be applied to the problems under investigation. Throughout the 
thesis work we emphasize on selecting or designing those kinds of representation changes for 
every group of problems that could be utilized by automated reasoning, planning or scheduling 
systems. 

The methodology of hybrid approaches introduced later in this chapter, distinguishes two 
main cases.This stratification is due to the drastic difference in the way of initializing the 
strategy of research. Although the initial phase is extremely important and probably makes the 
major contribution to the global success of the approach, in either case it is extremely important 
to perform thorough analysis along different directions to identify the most effective methods of 
solving the group of problems under the scope. Finding an appropriate representation that would 
allow methods from distinct areas to be applied to the same group of problems, is a keystone 
step that proceeds the analysis. Furthermore, when possible, we recommend to combine the 
most beneficial features found during the analysis phase, thus, utilizing the advantage of the 
common representation developed. 

Though both cases differ from each other in the problem selection and the performance 
analysis, they have a lot in common regarding the concluding phase of constructing hybrid 
solutions. We consider that the global approach succeeds, if we are able to come up at least 
with the classifications of a certain group of problems and state recommendations on effective 
usage of particular methods depending on properties of the problem domain. The ultimate goal 
of the hybrid approach is to combine the best features of the analyzed algorithms in a single 
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framework with an internal, self-regulating process. For example, if a physical or fictitious 
agent with limited lookahead performs search in an initially unknown domain, the issue of 
"exploration versus exploitation" becomes a keystone of the efficiency of search. We propose 
a mechanism of regulating reasonable balance between "rushing to the goal" driven by prior 
knowledge and "learning more" for reversible1 domains in Chapter 3. 

1.1   Retrospectives of Hybrid Approaches 

Hybrid efforts and cross-fertilization between distinct scientific areas have a long-standing 
history. Even Archimedes was not, probably, the first scientist to apply knowledge across 
distinct disciplines. The following phrase is the interpretation of the excitement of this great 
Greek scientist about the power of levers: "Give me a lever long enough, and a place to 
stand, and I will move the Earth." This scientific idea illustrates a particular application of 
cross-fertilization between Mechanical Engineering and Astronomy. 

In this sneak preview of the thesis, we would like to refer the reader to the main quotation 
of the thesis due to Rene Descartes: "Each problem I solved became a pattern, that I used later 
to solve other problems." It brings up the take-home idea that both the re-utilization of already 
acquired knowledge, and reductions to already solved problems form the basis of applications 
within a sole discipline, as well as across distinct areas of Computational Sciences. 

Speaking about Artificial Intelligence, efforts of bringing techniques and ideas from other 
areas of Science to AI, in particular, to search and optimization problems, have been attempted 
multiple times throughout the history of AI. In this thesis work, we are concentrated on hybrid 
efforts between Computational Sciences, namely, AI, OR and CS theory. Researchers from 
these three disciplines attempted multiple times to re-apply the most efficient methods to 
solve problems from other areas, including AI search and optimization problems. Moreover, 
these efforts have been organized lately in a well-structured form, and were divided in topics 
corresponding to specific groups of search problems. 

The First International Workshop on AI and OR, Portland, OR, June 95, highlighted the 
achievements and cutting-edge technologies from both disciplines and drew possible successful 
directions of combining their beneficial features. Job-Shop scheduling with constraints of 
various types [10, 22, 45] was identified as one of the testbed areas suited for attacking by AI 
and OR methods or their combinations. The Workshop concluded with a set of open problems 
that were supposed to shed a light on relations between techniques from AI and OR, such as 
the bounding power of the Pigeonhole Principle (PHP) and Linear Programming Relaxation 
(LPR), the complexity of identifying symmetries and its impact on reducing the complexity of 

domain is reversible if it can be represented as an undirected or bi-directed graph. For a detailed discussion, 
see Chapter 3. 
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search, among others. In this work we give an answer to the first open problem, namely, we 
demonstrate the duality relation between PHP and LPR. 

Recent surge in interest to methods of solving satisfiability problems was due to the success 
of local lull-climbing procedures. GSAT [34,64] and similar procedures-TS AT, CSAT, DSAT, 
HSAT [27, 29], WSAT [66], WGSAT, UGSAT [18], etc. - have attracted a lot of attention 
from AI researchers, because they appeared to be capable of finding satisfiable assignments for 
some large-scale practical problems that cannot be attacked by conventional resolution-based 
methods. In Chapter 6 we discuss the relations between local hill-chmbing procedures and 
agent-centered search methods. 

An effort of bringing graph-theoretical ideas into planning resulted in an attractively simple 
partial-order planner - Gr aphp 1 an [9]. This planner utilizes models and fundamental methods 
from the Graph Theory, for example, shortest paths on the directed graph that represents the 
planning domain, and network broadcasting of the alternative partial plans. Although the 
current version of Graphplan does not incorporate prior knowledge that might effectively 
lead search towards the acceptable plan, Graphplan guarantees at least to construct planning 
domain graphs in time that is polynomial on the size of the input [9]. 

The idea of enriching the area of efficient search control (planning) by bringing ideas 
from related areas of Science to search (planning) problems has been implemented in various 
modifications. For example, the implementation of the set differencing heuristic from Number 
Theory implied an elegant polynomial algorithm that approximates the iVP-hard problem of 
2-machine job scheduling and outperforms known greedy polynomial approximations[44]. 

In the following chapters we present several groups of problems that initiated a strong 
interest from an interdisciplinary point of view. They are of the particular interest to our 
current work, because they admit untraditional methods with highly developed techniques 
from distinct areas of Science. Chapter 2 illustrates a method-driven hybrid approach, where 
two well-known efficient methods are analyzed and compared along different dimensions. In 
Chapters 3-6, we apply the problem-driven hybrid approaches, which implies that we need 
to add the identification of relevant methods prior to the analysis phase. According to the 
methodology that we develop in this work, in such case, for every group of problems we, first, 
identify relevant known methods for solving these problems. Then, we analyze their advantages 
and drawbacks, and, when possible, propose novel hybrid algorithms to solve the considered 
problems efficiently. 

1.2   The Choice of the Areas 

The choice of Artificial Intelligence, Theoretical Computer Science and Operations Research 
has not been accidental. These three areas often attack close problems and are concerned with 
either the efficiency of deriving solutions or the efficiency of solutions themselves. Nonetheless, 
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even a problem statement may contain a big difference for distinct disciplines. Furthermore, 
differences in terms, existing techniques and efficiency foci can place the success of a naive 
hybrid effort into a doubtful position. 

Table 1.1 lists some advantageous features of AI, CS theory and OR. This table does not 
pretend to be a complete list of all beneficial features, it only highlights some of already 
identified ones within the considered areas. For example, AI researchers have long realized 
that prior knowledge can significantly improve empirical performance in practical applications. 
A solution to the problem, found with the help of the prior knowledge guidance, serves as a 
benchmark for methods from other areas. Moreover, it can also carry an additional bounding 
value, for example, any feasible solution establishes an upper bound on the value of the goal 
function in a minimization problem. 

AI CS Theory OR 

• Preprocessing 

- Representation 
Changes 

- Prior 

• Data 
Structures 

• Worst-Case 
Analysis 

• Linear 
Programming 

• Integer 
Programming 

Knowledge 

• Empirical 
Performance 

•   Mach 

• Optimal 
Algorithms 

• Approximate 

Algorithms 
ine 

- Modeling 

- Methods of 
Solving 

Learning 

1 
Table 1.1: Advantageous Features of AI, CS Theory and OR 

Artificial Intelligence has also accumulated an extended library of AI problem-tailored 
algorithms that are carefully selected from a wide pool of solutions, based on their empirical 
performances. Since deriving an exact average-case complexity is usually a very hard task that 
depends both on the domain features and the initial distribution of the problem instances, such 



6 CHAPTER 1. INTRODUCTION 

an extensive AI algorithmic library is of high value. Empirical performances of its algorithms 
serve as approximations of otherwise hard-to-derive average-case complexity justifications. 

In its turn, CS Theory possesses deep knowledge on data structures that are used in optimal 
or approximating algorithms. The worst-case analysis concludes with a justification of the 
optimality of a given algorithm or a guaranteed approximation of the optimal solution that this 
algorithm provides. From the point of view of hybrid algorithms, the strength of CS theory 
lies exactly in providing worst-case guarantees. This means that no matter how misleading 
in specific cases heuristic values may represent actual distances to the goal, the complexity 
of achieving the goal is not worse than a certain cut-off level established by algorithms from 
CS theory. Deriving average-case complexity is also often attributed to CS theory, as it is 
usually built upon and relies on classical CS theory data structures and methods of analysis. 
Unfortunately, prior knowledge is a rare guest in theoretical algorithms, because it seldomly 
improves the worse-case complexity or an approximation ratio. 

Operations Research is known for the strength of its methods from Linear and Integer 
Programming. Some researchers believe that methods of solving Linear Programming problems 
are currently the cutting-edge polynomial methods, i.e. they provide polynomial-time solutions 
for the most sophisticated problems. OR has also accumulated a broad experience in modeling 
various problems in a Linear, Non-Linear or Integer Programming form to apply already 
well-established techniques and solve those problems efficiently. Recent efforts in developing 
Mixed-Logical Linear Programming [21] constitute another example of a cross-fertilization 
approach between AI and OR that attempts to capitalize on advantageous features from both 
areas. 

Machine Learning attracted a lot of attention recently from researchers from different 
disciplines. Sub-areas of Machine Learning, such as Neural Nets, PAC-learning, Reinforcement 
Learning employ drastically different data structures and techniques varying from decision trees, 
rules, neurons, perceptrons, e-error, ^-confidence to (Partially Observable) Markov Decision 
Processes, etc. As such, we placed Machine Learning in between AI and CS theory. Some 
of the Machine Learning technologies are capable of deriving solutions of significantly better 
quality than traditional statistical methods in the domains, where accounting all domain states 
is impossible. 

1.3    The Problems 
One of the goals of this thesis is to demonstrate how some of the existing methods from AI, CS 
theory and OR can be applied to solve the same problems along different efficiency dimensions. 
We consider several groups of problems that include various scenarios arising in agent-centered 
search [38], namely, the problem of goal-directed exploration, sensor-based planning and search 
by local hill-climbing procedures. For every problem discussed under this scope, we analyze 
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the efficiency of known algorithms amenable to these problems. Worst-case complexity for 
some of them has been an open problem before our investigation, for some - the average-case 
complexity is still an open problem. 

Chapter 2 presents a discussion on the bounding power and a close relation between the 
Pigeonhole Principle and methods of Integer Programming. This discussion is illustrated 
through a series of combinatorial optimization problems with gradually increasing complexity. 

For some problems, the worst-case complexity of a particular algorithm does not predict its 
average-case (empirical) performance well. On the contrary, some of the algorithms with either 
worse or still unknown worst-case complexities demonstrate better empirical performances. For 
example, for randomly generated 2D Traveling Salesman problem, the furthest insertion and 
nearest neighbor methods construct shorter in average Hamiltonian cycles than the cheapest 
insertion or spanning tree-based methods [62]. The worst-case complexity of the solution 
derived by the furthest insertion is still an open problem, the ratio of the length of the solution 
produced by the nearest neighbor method to the length of the optimal solution is not bounded 
in the worst-case. Both the cheapest insertion and the spanning tree-based method guarantee 
a low approximation of two times the length of the optimal solution. Nonetheless, in practical 
applications both methods with the guaranteed low ratio produce Hamiltonian cycles of longer 
length. 

Another similar example comes from Operations Research. Popular in practical implemen- 
tations, the Simplex method has an exponential worst-case complexity, whereas the Ellipsoid 
method [36] provides polynomial worst-case guarantees, but loses to the Simplex method in 
practice. We explain the above phenomenon the following way: Methods that are concerned 
with the worst-case complexity are too cautious, they do not follow risky alternatives, but rather 
search the state space methodically. In their turn, risky methods may lose much in the case 
when their selected alternatives are misleading and the cost of recovery is high. 

Therefore, in this thesis we investigate both the worst-case complexity and the empirical 
performance of considered algorithms. While developing new hybrid methods, we also cover 
both performance metrics. In Chapters 2-6 we develop interdisciplinary representations, cross- 
apply existing problem solving methods, and analyze the performance of efficient solutions to 
the following set of problems: 

1. Combinatorial optimization problems - in this group of problems we are mainly focused 
on the bounding power competition between the Pigeonhole Principle and methods of 
Integer Programming, such as Linear Programming Relaxation and Integer cuts. In 
addition to it, we argue about the duality relation between the Pigeonhole Principle and 
Linear Programming Relaxation. In Chapter 2 we illustrate this relation through a series 
of combinatorial optimization problems. 

2. Goal-directed exploration - search in partially or completely unknown domains by an 
agent with limited lookahead. From this large set of problems, we extract several sub- 
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groups of problems with related problems scenarios that present the major interest to 
hybrid approaches: 

(a) Treasure Hunt - search for a goal state by an agent whose lookahead is limited to the 
set of available actions at its current state in an unknown, reversible (undirected or 
bi-directed) state space. We also assume that prior knowledge is provided for every 
instantiation of an action at a particular state in the form of heuristic values. The 
initially unknown state space is either static or changes at discrete points in time. 

(b) Sensor-Based Planning - search for a goal vertex by an agent whose lookahead is 
limited to the neighbors of its current vertex. The map of the problem domain is 
provided to the agent, however, traversability to each vertex is unknown unless the 
agent senses it from one of the neighboring vertices. 

(c) Local Hill-Climbing Procedures - search for a satisfiable assignment on an N- 
dimensional cube by a fictitious agent whose lookahead is limited to the neighbors 
of its current vertex. Prior knowledge is provided for every vertex (corner) of the 
cube, but it may be neither consistent, nor admissible. 

First group of problems brings back the discussion on the difference between human-derived 
and computer-oriented solutions. The "Mutilated Checkerboard" problem introduced in 60's 
[47,55] raised a lot of interest in Mathematical, Logical and AI communities. The development 
of Operations Research and the introduction of Linear Programming methods with polynomial 
complexity, automatically added OR researchers to the above discussion. Do there exist any 
complexity barriers? Can a problem solution benefit from a specific presentation and the 
application of one of the traditional methods from the correspondent area of Science? Is any 
area of Science more preferable in deriving approximate solutions? 

Second group of problems concerns the trade-offs between acquiring more knowledge about 
the surrounding environment and moving to the goal. The initial uncertainty of an agent about 
the domain, where one is supposed to five and to act in, is a realistic assumption in many 
real-world problems. Such an assumption stimulated our efforts in developing goal-directed 
exploration methods with the emphasis on the empirical performance. 

1.4   Methodology of Hybrid Approaches 
The development of classical, theory-oriented Computational Sciences and of novel, more 
application-oriented branches of Science, such as Artificial Intelligence, has arranged a fruitful 
background for designing new generations of efficient solutions for challenging problems. The 
whole pool of problems, models and technologies from AI, CS theory and OR seems to promote 
the idea of hybrid approaches based on achievements of these disciplines. 
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The methodology of designing hybrid solutions that we follow throughout the thesis work 
consists of several phases. We distinguish two main types: Problem-driven and method-driven 
hybrid approaches. In the former case, hybrid efforts start with the identification of efficient 
methods amenable to the given problem. In the latter case, two or more methods are already 
provided, hence, the method-driven hybrid approaches skips the first phase. Nonetheless, a 
certain research often has to be performed in such a case, for example, in finding challenging 
common applications, where the provided methods can be applied to. Overall, hybrid ap- 
proaches consist of the following phases: 

Phase 1 (Selection). Identification of efficient methods of solving given problems. 

Phase 2 (Creating the Environment). Development of an interdisciplinary problem envi- 
ronment, so that methods from different scientific areas can be applied to the same problems. 

Phase 3 (Analysis). Analysis of all selected methods along different efficiency dimensions, 
and the identification of their beneficial features. 

Phase 4 (Problem Classification). Classification of the problem instances to be attributed 
to particular algorithms for the best efficiency. 

Phase 5 (Constructing Hybrid Methods). Construction of novel hybrid methods to utilize 
the identified beneficial features of the selected methods. 

Thus, a problem-driven hybrid approach begins with the analysis of a particular problem 
or group of problems along different directions to identify efficient methods of solving these 
problems. In parallel, for every group of problems discussed in this work, we design an 
interdisciplinary problem environment, so that methods from different scientific areas can "talk 
to each other," be applied to the same problems, and, finally, be compared in the Analysis Phase. 
Phase 4 (Problem Classification) concludes with recommendations on matching problems with 
the most efficient methods of solving. When possible, we proceed to the Constructing Hybrid 
Methods Phase, i.e. we combine the most beneficial features found during the Analysis Phase, 
thus, utilizing the advantage of the common representation developed. 
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1.5   Contributions of the Thesis 

This thesis expands the handset of AI tools for solving search problems efficiently, and demon- 
strates the correctness of the methodology of hybrid approaches through successful applications 
to various groups of problems. 

Through bringing problems and methods from different areas of Science to a common testing 
field, we show that there exists a room for mutual enrichment, that already developed, efficient 
methods of solving particular problems can be re-applied to new problems in an untraditional 
fashion, and that the best features of certain solutions can be re-utilized in designing novel 
efficient methods. In this thesis such testing fields include a) combinatorial optimization 
problems and b) deterministic on-line search. Already these two fields cover a substantial 
variety of problems. However, in our extended research we discuss c) the complexity of on-line 
search and relate it to other known results. The latter development finks nicely both directions 
a) and b). 

Concerning combinatorial optimization problems, we consider problems that are tradition- 
ally amenable to the Pigeonhole Principle (PHP). We show that if a problem can be transformed 
in a Integer Programming form, then an application of a Linear Programming Relaxation (LPR) 
establishes the same bound for the solution value as the PHP. Whereas the PHP often provides 
the most elegant and efficient solutions, for many combinatorial optimization problems it is 
hard to come up with a proper heuristic that would hint on finding the desired mapping between 
the pigeons, the holes, their capacities and the objects of the problem. On the other hand, LPR 
automatically narrows its consideration to tight constraints that can be viewed as the desired 
mapping for the PHP. Thus, the PHP and LPR establish the same bounds for the values of 
combinatorial optimization problem's solutions. Moreover, the relation between the PHP and 
LPR corresponds to the duality relation in Linear Programming. 

Concerning on-line search, we show that the most beneficial features of CS theoretical 
algorithms - the worst-case guarantees - and of AI algorithms - a heuristic guidance - can be 
combined in a single hybrid method that preserves both the heuristic guidance and optimal or 
sub-optimal worst-case guarantees. Such a hybrid approach, thus, inherits strong empirical 
performance from heuristic-based algorithms and does not lose much to algorithms from CS 
theory when the heuristic appears to be misleading. 

Scalability of methods applicable to on-line search and satisfiability problems, attracted 
recently a lot of attention. Certain on-line search methods have been successfully applied 
to challenging large-scale off-line problems and derived efficient solutions. In this thesis we 
discuss known results about the complexity of some on-line search methods, that include, for 
example, random walk. Guided by this knowledge, we introduce a novel parameter for search 
domains - "oblongness" - and argue about the place of successful on-line search methods in 
the global spectrum of the introduced parameter. 



Chapter 2 

Combinatorial Optimization Problems 

The First International AI and OR Workshop held in Portland, OR, June 95, initiated a dispute 
on the competitive power of two drastically different methods of deriving upper bounds for 
combinatorial optimization problems: Pigeonhole Principle (PHP) and Linear Programming 
Relaxation (LPR). 

The Pigeonhole Principle (PHP) has been one of the most appealing methods of solving 
combinatorial optimization problems. Variations of the Pigeonhole Principle often produce 
the most elegant solutions to non-trivial problems. However, some Operations Research ap- 
proaches, such as the Linear Programming Relaxation (LPR), are strong competitors to the 
PHP: They can also be applied to combinatorial optimization problems to derive upper bounds. 
Note, that throughout this chapter we use the notion of an upper bound to determine the quality 
of a solution and not the time complexity of deriving it. For example, an upper bound of value 
B, where B is a constant, means that the value of an optimal solution is less or equal to B. 

It has been an open question whether the PHP or LPR establish tighter upper bounds, when 
applied to the same problems. Challenged by this open question, we identify that the main 
reason for the lack of aßility to compare the efficiency of the PHP and LPR is the fact that 
different problem representations are required by the two methods. 

We introduce a problem representation change into an Integer Programming form which 
allows for an alternative way of solving combinatorial problems. We also introduce a series 
of combinatorial optimization problems, and show how to perform representation changes to 
convert the original problems into the Integer Programming form. Using the new problem 
model, we re-define the Pigeonhole Principle as a method of solving Integer Programming 
problems, introduce the "Hidden" Pigeonhole Principle (HPHP) and determine the difference 
between PHP and HPHP, show that PHP is the dual of LPR, and demonstrate that HPHP and 
Integer cuts are actually similar representation changes of the problem domains. 

The Pigeonhole Principle is usually attributed to human-derived proofs. Automatic reason- 
ing, planning or scheduling systems seem to have it hard-coded or not implemented, because 

11 



12 CHAPTER 2.  COMBINATORIAL OPTIMIZATION PROBLEMS 

of the variable nature of the matchings between the objects of the problem and PHP objects 
(pigeons, holes and their capacities) that is needed for a successful application of the PHP. 
On the other hand, methods of Linear and Integer Programming look more favorable for the 
computer-oriented implementations. In this chapter, we consider both approaches, compare 
their bounding power and propose an alternative way of implementing the Pigeonhole Principle. 

2.1   Pigeonhole Principle 

Though sounding very simple in its initial form, the PHP is "one of the most simpleminded 
ideas imaginable, and yet its generalizations involve some of the most profound and difficult 
results in all of combinatorics theory" [78]. It is a simple and an extremely effective method 
of deriving upper bounds for combinatorial optimization problems. If empowered additionally 
by appropriate heuristics or mtching between the pigeons, the holes and the objects of the 
problem, the PHP often provides the easiest way of proving the optimality of a particular 
feasible solution or impossibility of attaining a certain value. Most commonly the PHP is 
introduced in the following way: 

Pigeonhole Principle: It is impossible to place N + 1 pigeons into N holes so 
that there is at most one pigeon in each hole. 

In this original formulation the PHP looks like a naive kindergarten-level rule. It appeared 
in the literature also as a Dirichlet's Drawer Principle, and was used by Dirichlet in his study of 
the approximations of irrational numbers by rationals [14] in 1879. However, Gauss used it in 
1801 [26], and it is likely that the principle in some form occurred in the literature even earlier. 

When taken to a higher level of multiple objects per abstract unit or participating as a part 
of a multi-step logical proof, the Pigeonhole Principle quickly loses "the nuance of obviousness, 
its applications involve some of the most profound and difficult results in combinatorics. 
Sometimes, the PHP is stated as providing an answer to the following not-so-trivial question 
about a finite set of elements and k categories, with every element belonging to one of the 
categories: 

Pigeonhole Principle 2: What is the smallest set of elements such that there 
is guaranteed to be ni elements in the first category, or n2 elements in the second 
category,... or n^ elements in the k-th category? 

In this form the PHP is viewed as the base case of Ramsey's Theorem. Furthermore, under 
this scope, Ramsey's Theorem itself is often perceived as a vast generalization of the Pigeonhole 
Principle [32]: 
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Ramsey's Theorem: Let qi,q2,...,qn and t be positive integers with 
q{ > t i = l,...,n. There exists a least positive integer R(qi,q2,...qn',t) 
such that if the ^-subsets of a finite set S with cardinality at least R(q-[,q2, ...qn; t) 
are placed into n categories, then for some i there exists a subset S' C S of size gt 

(|5"l = qi) which have all of its ^-subsets in the z-th category. 

Figure 2.1 shows the reduction of the Pigeonhole Principle 2 to the capacity argument: 
«i, ^2, ft3 and n4 are the thresholds of four shown categories. To stay below the threshold level, 
each bin i should be filled up by at most n,; — 1. Hence, J2iLi (ni — 1) is the maximum capacity 
of such a multi-bin system. Therefore, any quantity above this capacity will saturate at least 

Wi- ll one of the categories, and the answer to the Pigeonhole Principle 2 question is 1 + J2i=i 
When the number of categories is one, the two Pigeonhole Principle definitions coincide. Thus, 
the two historical definitions of the the PHP are equivalent. 

Q_ 

n4=6 

Figure 2.1: Illustration of the Pigeonhole Principle 

With respect to a particular problem, we associate the Pigeonhole Principle with labeling 
some of the original objects of the problem with numbers, called capacities. If an upper bound 
provided by a capacity argument for such a labeling equals to the value of an optimal solution, 
we tell that the application of the PHP established the tight upper bound. For some combinatorial 
optimization problems, none of the labelings of the original objects lead to establishing the tight 
upper bound. Such problems may require representation changes that would enable labeling 
complex structures built upon the original objects of the problems. We call such extended 
applications of the PHP as the "Hidden" Pigeonhole Principle (HPHP). In a certain sense this 
split between the PHP and HPHP is similar to the difference between resolutions and extended 
resolutions (see Section 2.7), between solving Integer Programming problems by LPR and by 
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the combinations of integer cuts and LPR (see Section 2.2). We give precise definitions of PHP 
and HPHP in Section 2.3. 

To solve a combinatorial optimization problem by the PHP, one needs to represent a problem 
in such a way that the principle can be applied, i.e. to identify what in the problem should 
be mapped into objects (pigeons) and units (holes), and what their capacities are. For simple 
problems, the applications of the PHP are almost straightforward and are obtained directly 
from the nature of the problems. However, often a proof by the PHP requires additional 
heuristic knowledge that would allow to perform this type of mapping effectively. For some 
combinatorial optimization problems, one has to come up with pigeons and holes that are 
different from the original objects of the problem. Were this combination of the representation 
change and the mapping known in advance, the PHP would easily derive the tight upper bound 
and construct an optimal solution. For many combinatorial optimization problems, however, it 
is a very challenging task to find such a representation change and a mapping. The difficulty 
of this task complicates implementations of the PHP in AI reasoning, planning or scheduling 
systems, and encourages researchers to look for alternative methods. 

The introduction of polynomial-time algorithms solving Linear Programming problems al- 
lows some Operations Research methods to be applied in an efficient manner to combinatorial 
optimization problems and establish upper bounds for such problems. For example, Linear 
Programming Relaxation (LPR) method can be applied effectively to solve some Integer Pro- 
gramming (IP) problems. LPR can be seen as requiring less effort to apply than the PHP, 
because in general, unlike the PHP, it does not need any additional knowledge or representation 
changes to derive upper bounds for IP problems. 

The two approaches, namely PHP and LPR-based methods can be seen as "competitors" for 
solving combinatorial problems. It has been an open question1: Which method provides tighter 
upper bounds, when applied to the same combinatorial optimization problems. In this chapter, 
we report on our work in solving this open question. As hinted so far, our work analyzes carefully 
the problem representation issues involved in the two approaches. We formally introduce an 
appropriate representation change that makes the comparison and analysis possible. To clarify 
the status of the PHP in a non-traditional field of Integer Programming (IP), we re-define it as 
a particular method of solving IP problems. 

Thus, our work includes: 

1. Re-defining the PHP as a method of solving Integer Programming problems. 

2. Proving that both the PHP and LPR establish the same upper bounds for problems stated 
in the Integer Programming form. 

'Identified at the First International Workshop on AI and OR, Portland, OR, June, 1995. 
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3. Providing an alternative approach to solving combinatorial optimization problems for 
which the effective representation change required by the PHP is hard to find. The 
alternative approach consists of the following steps: 

(a) Convert a combinatorial optimization problem into an Integer Programming form. 

(b) Apply LPR to obtain an upper bound B which, as we will prove, is the same as the 
upper bound obtained by PHP. 

(c) Construct an optimal solution of value B. 

2.2   Linear Programming Relaxation 

Linear Programming Relaxation (LPR) is an effective Operations Research method of estab- 
lishing upper bounds for Integer Programming problems [54]. The efficiency of its main 
calculation engine is supported by the discovery of polynomial methods of solving Linear 
Programming problems, such as the Ellipsoid algorithm [36]. Actually, LPR is a two-step 
procedure consisting of relaxing integer requirements and solving the corresponding Linear 
Programming problem. 

Simplisticly, LPR can be viewed as a black-box with a particular instance of an Integer 
Programming problem as an input and a calculated upper bound as an output. From this point 
of view, LPR looks preferable to the PHP, because it does not need any heuristic knowledge to 
derive upper bounds. LPR can be applied to any instance of an Integer Programming problem 
without additional representation changes. Thus, the main questions of the competitive analysis 
between the PHP and LPR can be stated as the knowledge representation problem: Which form 
of presenting combinatorial optimization problems allows to establish tighter bounds? 

2.2.1   Important Facts from Linear Programming 

In this section we introduce basic definitions and facts from the theory of Linear and Integer 
Programming. Readers familiar with this subject may skip this section. 

A particular instance of a Linear Programming (LP) problem consists of the goal function 
and the set of inequalities (constraints). Both the goal function and the constraints depend 
linearly on each variable. Throughout this section we consider variables to be real-valued, and 
their number is finite, the number of inequalities is also finite. Thus, a typical LP problem is of 
the following type: 

N 

goal function:      maa^y^CjX,) 
i=\ 
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N 

constraint set J :   ^ aijXi < bj   j — 1,..., M 

Xi e R   i - 1,...,N 

Usually coefficients a,j, bj and ct are rational, it allows to limit our consideration to 
rational-valued variables Xi e Q i — 1,..., N. To simplify further discussion, we introduce 
a particular LP problem which will help to illustrate the discussion: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Figure 2.2 shows the feasible region, optimal solution x* = (1,2), and the goal vector 
corresponding to the goal function (2.1). Theory of Linear Programming states that for any 
optimal solution x* there exists a subset of constraints, called tight constraints, such that: 

• Inequalities representing tight constraints are actually equalities for x*, or, equivalently, 
there is no slack for tight constraints with respect to a;*. 

• The number of tight constraints can vary from 1 to M. 

• Goal function is a positive combination of the left-hand sides of tight constraints. 

• It is always possible to represent the goal function as a positive combination of at most 
N tight constraints. 

In our example (2.1-8) inequalities (2.4) and (2.5) form the set of tight constraints with 
respect to the optimal solution x* = (1,2). Thus, the goal function (2.1) can be presented as a 
positive combination of (2.4) and (2.5): y = \{y - x) + \{x + y). 

If we vary inequality (2.6), it may also become a tight constraint. For example, inequality 
x + 2y < 5 is a tight constraint with respect to the optimal solution x* = (1,2). If added to 
the existing set of tight constraints (2.4) and (2.5), it would constitute a redundancy: Left-hand 

goal function : max(y) 

constraint set J : -x <0 

-y<o 
y — x < 1 

x + y <3 

x + 2y < 8 

x e Q 

y£Q 
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0       1       2       3 N X 

Figure 2.2: A Particular Instance of a LP Problem 

sides of any two out of three inequalities can be used in a positive weighted sum to obtain 
the goal function. On the other hand, the goal function may also vary within a certain range 
to preserve the same optimal solution and the set of tight constraints. In problem (2.1-8) for 
any goal function of the form y + ax with a G [— 1,1], the set of tight constraints consists of 
(2.4) and (2.5). For the extreme values of a £ {—1,1} one of the tight constraints becomes 
redundant, since the goal function coincides with the left-hand side of the other tight constraint. 
Moreover, in both extreme cases there exists an infinite number of feasible solutions attaining 
the same optimal value. These optimal solutions form a face of a polyhedron of feasible 
solutions defined by the IP problem's constraints. For example, in problem (2.1-8) the set of 
feasible solutions forms a 2D tetragon (see Figure 2.2), and the set of optimal solutions is either 
a zero-dimensional face (a single 2D point) or a one-dimensional face (one of the tetragon's 
sides). 

Thus, on one hand, a positive weighted sum of left-hand sides of tight constraints establishes 
an upper bound: Since 12j12iajaijxi = 12icixi> where a, > 0, and J2iaijxi < ty, then 
12i cixi < 12 j ajbj- On the other hand, any feasible solution x sets a lower bound for the goal 
function J2i cixi- Furthermore, tight constraints have no slack with respect to optimal solution 
x*, therefore, the lower bound provided by x* coincides with the upper bound established by 
the positive weighted sum of tight constraints and both are equal to the optimal value Y^i cix*i- 

2.2.2   Definition of Linear Programming Relaxation 

Compared with Linear Programming problems, Integer Programming (IP) problems have an 
additional requirement that some of its variable are integer-valued. Throughout this chapter 
we consider only those IP problems that have linear goal functions and linear constraints. In 
general, an addition of integer-valued variables makes an Linear Programming problem NP- 
hard [25]. However, in some particular cases, it is possible to solve IP problems efficiently, 
by applying Linear Programming Relaxation (LPR) or a combination of Integer Cuts and LPR 
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[54]. Since Integer cuts result in adding new feasible constraints that take into account the 
integrality of variables, we view such a technique as performing a representation change on 
the problem domain. As we show in Section 2.5, such a perception corresponds completely to 
traditional representation changes for combinatorial optimization problems that can be stated 
in the Integer Programming form. 

Linear Programming Relaxation is a simple procedure that consists of two steps: 

1. Drop (relax) integrality requirements for all variables. 

2. Solve the correspondent LP problem. 

For some IP problems, like problem (2.1-8) introduced earlier, LPR outputs an integer 
feasible solution, thus, solving such IP problem. In other cases, when LPR outputs a fractional 
optimal solution x*, it establishes an upper bound J2 Cix* for the goal function. In such cases, 
LPR is usually not very helpful in indicating the tightness of the upper bound. One has to come 
up with a feasible integer solution that matches the derived upper bound to prove that the bound 
is tight. 

Integer cuts produce additional constraints that utilize the integral nature of a subset of 
variables. Additional constraints can be derived in many different ways, Integer cuts produce 
ones that cannot be obtained by taking positive weighted sums of the existing inequalities. 
In conjunction with LPR, Integer cuts are capable of solving IP problems, whereas the effi- 
ciency of this combination in obtaining tight upper bounds relies on the "quality" of newly 
created constraints constructed by Integer cuts techniques. Examples of the Hidden Pigeonhole 
Principle's applications, namely the "Mutilated Checkerboard" problem and the Firm Tiling 
problem discussed in Section 2.5, illustrate an alternative way of solving these problems through 
Chvatal-Gomory's (Integer) cuts and LPR. 

2.3   Converting Problems into the Integer Programming Form 

We identified that the main reason of the lack of ability to compare the efficiency of PHP 
and LPR is that different problem representations are required by the two methods. Our work 
consisted of developing appropriate changes of representations that made possible a competitive 
analysis of the efficiency of these two methods. 

To make both PHP and LPR applicable to the same combinatorial optimization problems, 
we perform representation changes for each problem discussed in this paper to convert them 
into Integer Programming problems of the following form: 

N 
goal function: maxi^^CiXi) 

i=\ 
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N 

constraint set J : ^ ciijXi < bj   j = 1,..., M 
i=i 

integrality requirements :   X{ £ Z   i = 1,..., N 

A combinatorial optimization problem is defined as finding a solution x* = (x\,..., x*N) 
that is feasible, i.e. satisfies all the constraints from J and the integrality requirements, and also 
attains the best value of the goal function among all feasible solutions. 

We considered a series of known combinatorial optimization problems, to which the Pi- 
geonhole Principle is traditionally applicable. The empirical evidence obtained through this 
study suggested that the following definition reflects correctly the combinatorial nature of the 
Pigeonhole Principle. 

Definition 2.3.1 We say that the upper bound for an IP problem is derived by 
the Pigeonhole Principle, if there exists a subset of constraints J C J, such that 
the sum of the left-hand sides of the inequalities from J (repetitions are allowed in 
J) is a multiple of the goal function 

N N 

jeji=i j=i jej 

and the derived bound is the smallest scaled down sum of right-hand sides 

In other words, the PHP establishes an upper bound for an IP problem that corresponds 
to the smallest value B = min/CJ A J2jej bj, such that J2j^jJ2iLi aijxi = &Z)iIi c%xi holds 
for some positive k > 0. If it happens that a feasible solution a;* is known, which attains the 
derived value B, then we say that the PHP establishes a tight upper bound. Whenever the PHP 
establishes a tight upper bound, we say that a problem admits a proof by the PHP. 

In general, the procedure of considering a subset of constraints and summing them up 
(possibly with positive weights) results in setting upper bounds for the value of an optimal 
solution. Any feasible solution provides a lower bound for the optimal value of the problem. 
We identify applications of PHP with finding a subset of constraints and obtaining the optimal 
value of the goal function. In this case, the established upper bound matches the lower bound 
provided by the found optimal solution. 

Definition 2.3.2 If a set of constraints added to an Integer Programming prob- 
lem converts the original IP problem into another IP problem that admits a proof 
by the Pigeonhole Principle, we say that the original problem admits a proof by 
the Hidden Pigeonhole Principle (HPHP). 
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Additional constraints can be obtained in many different ways. Weighted positive sums, 
for example, can simplify some of the existing constraints, but they would not contribute any 
restrictions on fractional optimal solutions obtained by Linear Programming Relaxation. In 
Section 2.4 we consider an Integer cuts technique that allows to derive tighter valid inequalities 
and to keep all integer solutions feasible. Constraints obtained from Branch-and-Bound meth- 
ods can also be sought as an addition to the existing set of constraints. We consider the way of 
constructing additional constraints and the sanity check that an optimal integer solution has not 
been cut off to be the responsibility of the problem solver. 

The introduced representation change allows to re-formulate the original PHP statement 
with 11 pigeons and 10 holes as the following IP problem: 

11    10 

j=lJ=l 

11 

5>fj<i j = i,...,io 
t=i 

Xij £ {0, 1}, 

where x^ represents the amount of the zth pigeon in the jth hole. If we drop integer requirements 
and sum up all the constraints, we obtain an upper bound: J2lLi Z)]=i xij = £j=i £;=i %ij < 
10. Since an obvious solution {xu =1 for i = 1,..., 10; x^ = 0 for i / j} provides the 
same value, we proved it to be optimal. For this simple problem, PHP and LRP approaches are 
identical. 

In most obvious cases, the desired subset of constraints is the whole set of original inequal- 
ities. Consider, for example, the problem of placing chess kings on a circular chessboard with 
even number of squares (see Figure 2.3). One is supposed to find the maximal number of kings 
that can be placed on such a board so that no king is attacking another. Recall that a chess king 
attacks all its adjacent squares. For the board presented in Figure 2.3, we get the following IP 
problem: 

N 

j=i 

x\ + X2 < 1 

x2 + x3 < 1 

xN_i + xN < 1 

XN + X\ <  1 

xi e {o, 1} 
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Figure 2.3: Chess kings on a circular chessboard. 

If we sum up all the inequalities, we get 2 J2iLi %i < N, which is equivalent to Y^iLi xi < 
N/2. The same upper bound can be obtained from applying a combination of two-coloring 
and PHP: if we color the circular board with even number of squares in alternating black and 
white colors, we can place kings on either color attaining the optimum value of N/2 derived 
this way by PHP. Thus, the upper bounds are the same, however, the application of LPR seems 
to be easier, as it does not need any additional heuristic knowledge. 

The case when a proper subset of constraints is involved in obtaining a tight upper bound 
is more complicated. To apply the Pigeonhole Principle in the original combinatorial form, 
one has to find which problem's objects should be matched with pigeons and which - with 
holes. In the Integer Programming form it means that one has to come up with a rule (heuristic) 
of finding a desired subset of constraints to sum them up. For some problems, it is easy to 
find such a subset, whereas for others it is not obvious. For example, the popular iV-Queen 
problem [24, 53], which is the problem of placing the maximal number of chess queens on 
iVx JV-chessboard, so that no queen is attacking another, can be represented as the following IP 
problem: 
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for each i e{l,...,N} 

andj €{!,...,iV} 

N   N 

i=l J = l 

J2k=l Xik <  1 

12k=l Xkj <  1 

T,(k,l)el(i,j) Xkl < 1 

E(fe,/)€J(t,i) «w ^ ! 

a?ti e {0,1} 

where /(i, j) and J(i,j) are the sets of squares which a chess queen threatens along two 
diagonals from the square (i,j), including the square (i, j). In this form we have four groups 
of constraints: row, column, and two diagonal constraints, one of each type per square. For 
this problem it is easy to find a subset of constraints that provides the tight upper bound. If we 
sum up iV inequalities corresponding only to row constraints for squares from different rows, 
we get N as the upper bound: J2iLi EjLi xij < N- Beginning with TV = 4, the problem has 
an iV-Queen solution [24] (see Figure 2.4). 

Figure 2.4: N-Queen Problem Solutions for N = 4, 5, 6 

Though PHP readily provides the tight upper bound, it is not always immediately clear how 
to construct an optimal solution that will attain the obtained bound. The TV-Queen problem 
stimulated the development of a generation of backtracking algorithms constructing optimal 
solutions for the iV-Queen problem, which is a hard problem itself. The Chess Knight problem 
[4] is one of the jewels of PHP applications; it is the one for which the selection of a constraint 
subset is a challenging task. We discuss this problem in the following section in detail. 
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2.4   PHP is the Dual of LPR 

In this section, we discuss the duality relation between the Pigeonhole Principle and the Linear 
Programming Relaxation. As we concluded in the previous section, for some problems, it is 
tempting to apply LPR in a brute-force manner. Instead of requesting additional heuristics that 
will suggest how to select the desired subset of constraints, one can apply already developed 
methods of Linear Programming with the hope of deriving the same or even better bound. This 
brings us back to the main question of this chapter: Is it true that PHP and LPR always provide 
the same upper bound? The following theorem answers this question: 

Theorem 2.1 If an Integer Programming problem admits a proof by the Pigeonhole Principle, 
then LPR provides the same optimal value. Conversely, a bound derived by LPR can be matched 
by PHP. 

Proof: The re-defined in Section 2.3 Pigeonhole Principle is exactly the statement of the 
non-degenerous dual problem. Indeed, if an IP problem admits PHP in deriving the tight upper 
bound, then there exists a feasible integer solution x* attaining the derived bound. On the 
other hand, there exists a subset of constraints J, sum of the left-hand sides of which is an 
integer multiple of the goal function: J2jeJ D» aijxi = kJ2i cixi, and the value of x* is the 
same multiple of bounding constants: Ylj^j bj = k J2i cix*. 

If we apply LPR to the IP problem, it will provide an integer or a fractional optimal solution 
x** for a relaxed problem. Since PHP has derived the tight upper bound, and the relaxed 
problem is obtained from the original IP problem by dropping integrality requirements, x* was 
one of the candidates for LPR's optimal solution, and the value of LPR's solution x** is equal 
to PHP's tight upper bound: £i=1 c{x** = £;=i c{x*. 

According to the theory of Linear Programming, there exists a subset of the constraint 
set, called tight constraints, such that the goal function is a positive weighted sum of the 
left-hand sides of the constraints from this subset T,jeJ £; ®jaijxi = J2i cixi- Moreover, an 
optimal solution x** has no slack for each of the constraints from J, that is, satisfies them 
as equality J2i aijxT = °j f°r 3 £ J- Since all the coefficients in the constraints J and the 
goal function are integer, all the weights <XJ > 0 (positive coefficients) of the weighted sum 
are rational. We can find an integer k to scale all rational coefficients up ßj = kaj and make 
all of ßj integer. In this case, k plays the role of a scaling coefficient, integer ßj tells how 
many times should the tight constraint j e J be, used in an "unweighted" sum of left-hand 
sides J2jeJ ßj £»' aijxi — k J2i £ixi- Hence, the upper bound 1/k Ejejßjbj = E; cix** can be 
matched by PHP. 

Therefore, the set of tight constraints forms the desired subset J and positive integer weights 
determine the number of repetitions in J. Therefore, the value of the solution derived by LPR 
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does not improve the upper bound provided by PHP and, conversely, it can be mimicked by 
PHP to establish the same upper bound.   ■ 

Theorem 2.1 provides the following answer to the main question of the chapter: If the 
optimal value is obtained by PHP for a combinatorial optimization problem stated in the 
Integer Programming form, LPR provides the same bound as PHP. 

Corollary 1 The Pigeonhole Principle is the Dual of Linear Programming Relaxation. 

Thus, Definition 2.3.1 from Section 2.3 enabled us to state an interesting relation between 
two very different approaches. How legitimate is Definition 2.3.1, aren't we pushing the 
envelope too much? We place this discussion after presenting the results and the proof of 
Theorem 2.1, because we need to use them in our discussion. We identify the Pigeonhole 
Principle for IP problems with establishing a set of objects (holes) with associated capacities. 
From the proof of Theorem 2.1, it immediately implies that such PHP is as powerful in 
establishing upper bounds as LPR: Tight inequalities constitute holes, their right-hand sides 
determine holes' capacities, sum of the capacities of holes produce the same upper bound 
as LPR. On the other hand, the Pigeonhole Principle was defined (see Section 2.1) as the 
principle dealing with the objects of the problem. Therefore, if the problem is stated in the IP 
form, PHP cannot produce a tighter upper bound than LPR, other than through changing the 
problem statement, because none of the combinations of the IP problem objects - variables, 
inequalities, goal function - can improve LPR's bound. By performing representation changes, 
for example, Integer cuts, a problem solver changes the problem statement, hence, such an 
improved bound and the solution itself, should be attributed to the "Hidden" Pigeonhole 
Principle (see Definition 2.3.2). Such a split between PHP and HPHP is similar to the difference 
between the techniques of resolutions and extended resolutions (See Section 2.7). 

For example, the Firm Tiling problem with the double-firm requirement (see Section 2.5) 
can be trivially shown to be infeasible by the Pigeonhole Principle. Single-firmness does not 
imply non-feasibility immediately. One needs to perform a representation change or to come up 
with a powerful heuristic that would reduce single-firmness to double-firmness, hence, change 
the problem statement. Furthermore, a simple application of the Pigeonhole Principle is not 
capable of showing infeasibility in the single-firm problem version. This argument confirms 
the correctness of our definition that draws a splitting fine between PHP and HPHP, with the 
former one thus becoming the dual of Linear Programming Relaxation. 

The discussion on the duality relation became possible after bringing both methods to the 
common ground of Integer Programming. We demonstrate that the above result is non-trivial 
by solving the Chess Knight problem [4]: "What is the maximal number of chess knights that 
can be placed on the 8x8 chessboard in such a way that they do not attack each other?" The 
classical elegant solution relies on the existence of a Hamiltonian tour of length 64 following 
the knight moves. One of such tours is presented in Figure 2.5. 
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Figure 2.5: Hamiltonian Tour on a Chessboard for the Knight 

One can split the tour into 32 pairs of chess squares that are adjacent in the sense of the 
knight move, and apply PHP: Each pair can contain at most one knight, otherwise two knights 
would attack each other. For example, consider pairs of squares (1,2), (3,4),...,(63,64). None 
of them can accommodate more than one knight (see Figures 2.5 and 2.6). Thus, 32 pairs of 
adjacent squares can accommodate at most 32 knights. Although this simple proof does not 
provide us with a solution to the problem, (for example, it allows to place knights on squares 4 
and 5 from pairs (3,4) and (5,6)), it provides a tight upper bound. 

Moreover, this proof gives an impression of using a "hidden" application of the Pigeonhole 
Principle, whereas the Hamiltonian tour is just a heuristic for finding a subset of the constraint 
set. The Chess Knight problem for the standard chessboard can be presented as the following 
Integer Programming problem: 

8      8 

i=i i=i 

Xij + xki <1   i 

Xu e {o, 1} 

1,...,8 j = l,...,8 (k,i)eu(ij) 

where x^ represents the amount of knights in the square (i,j); U(i,j) is the set of squares on 
the chessboard which a chess knight threatens from the cell (i, j) (see Figure 2.6). 

If applied to the Chess Knight problem, the Linear Programming Relaxation method pro- 
vides the same upper bound of 32. Unlike PHP, LPR does not require heuristics to identify any 
subset of constrains, its calculational routine considers tight constraints inside the solving pro- 
cess. However, LPR is likely to produce fractional solutions, say X{ = 1/2 for z = 1,2,..., 64. 



26 CHAPTER 2.  COMBINATORIAL OPTIMIZATION PROBLEMS 

Figure 2.6: The Set of Adjacent Squares for the Knight on a Chessboard 

Theorem 2.1 shows that, if applied, the original Pigeonhole Principle will provide the same 
value. So, if the Hamiltonian tour heuristic were not known, the application of LPR would 
tell that 32 is the best upper bound that can be obtained by the original PHP. Since a chess 
knight alternate colors (see Figure 2.6), one can place 32 knights on the chess squares of the 
same color, thus attaining the optimal value and constructing the optimal solution for the Chess 
Knight problem. 

From the duality relation, it follows that, if an optimal solution of value B for a combinatorial 
optimization problem is derived by the Pigeonhole Principle, an optimal solution for the last 
problem in the following chain of representation changes has the same value B: 

Original combinatorial problem-^ IP problem -> Linear Programming problem. 

Examples discussed in this section showed that an additional effort is needed to apply the 
Pigeonhole Principle. For some problems it is easy to match problem's objects with pigeons 
and holes, in some cases it is a state of the art. Often PHP applications hint on how to construct 
optimal solutions, though for some problems it is an independent difficult problem. 

In its turn, LPR can be applied to any instance of an IP problem without need in additional 
knowledge. Unfortunately, LPR often outputs a fractional optimal solution, which does not 
shed any light on how to transform it into an integer one of the same value. We continue the 
discussion on benefits and disadvantages of PHP and LPR in the next section. 
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2.5   More Complicated Applications of PHP 

In the previous sections, we were able to apply PHP and LPR in a brute-force manner, because 
each Integer Programming problem contained a subset of constraints, sum of which provided 
the desired bounds for values of the goal functions. We call such a case a regular application 
of PHP, as opposed to the "Hidden" Pigeonhole Principle (HPHP) that requires additional 
representation changes and heuristic knowledge to fulfill a similar task. 

This section is devoted to the discussion on HPHP and its relation to the original Pigeonhole 
Principle. To make it more intuitive, we illustrate the discussion by the classical Mutilated 
Checkerboard [55] and the Firm Tiling problems: 

Figure 2.7: A Mutilated Checkerboard 

Mutilated Checkerboard Problem: Consider an NxN checkerboard with two 
opposite corners removed (see Figure 2.7). Can one cover this "mutilated" checker- 
board completely by non-overlapping domino pieces, each of the size of two squares 
of the checkerboard? 

Firm Tiling Problem: Consider a checkerboard of size 6x6 made of a soft 
square cloth and 18 hard tiles of size 1x2. Can one glue all 18 tiles to such a 
checkerboard, so that the "middle-cut" requirement is satisfied, i.e. each splitting 
fine inside the checkerboard goes through the middle fine of at least one tile? 

Figure 2.8 shows a firm 17-tile solution. The "middle-cut" requirement for a particular 
splitting fine restricts the cloth to be folded along this splitting fine: If the line crosses the 
middle of at least one tile, the cloth cannot be folded along this line unless the tile is broken. 
This is what we call a "single-firm" tiling. A more restrictive "double-firm" tiling requires 
each splitting fine to cross middle lines of at least two tiles. In this section we show that a 
"single-firm" complete tiling implies a "double-firm" tiling in the Firm Tiling problem. 
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Figure 2.8: Firm 17-Tile Solution. 

Following the proposed approach, the first step needed is the representation change con- 
verting the above problems into Integer Programming problems. To accomplish this step, one 
needs to model the fact that domino pieces do not overlap in the Integer Programming form. 
We assign variables x\- to vertical splits, where i is the row number and j is the split in iih row 
between squares (i,j) and (i,j + 1). In the same way, we define variables x\- for horizontal 
splits between squares (i,j) and (i + 1, j). One-valued variables x\2■ = 1 model the horizontal 
placement of a domino piece (tile) in such a way so that its middle fine is located at ?th vertical 
splitting fine and jth row; one-valued variables x\x = 1 model the vertical placement of a 
domino piece (tile) with its middle line at kih horizontal split in /th column. In these terms, 
non-overlapping can be represented by the following set of constraints: 

xij + xi-lj — *     xij + xi+lj — *     xij 
xij "T %i -lj ^ < 1 ^ + 4_!<i xij   i   xij 

-1,-1 < 1 

< 1 

(2.9) 

(2.10) 

Figure 2.9 demonstrates a part of a checkerboard and the correspondence of domino pieces 
(tiles) placing to 0/1-variables and splits. 

In the Mutilated Checkerboard problem the goal function is the unweighted sum of all 
domino-piece variables: J2ij xlj + J2ij xij- It is easY to guess one of the fractional optimal 
solutions produced by LPR: x^ = 1/2. It tells that if applied, PHP will provide the same 
bound of 31 (which is not tight). Furthermore, an optimal fractional solution does not help to 
find an optimal integer one, even when the upper bound is tight. 

If the original checkerboard is of size NxN with N odd, a simple PHP application shows 
that one can use at most ^f^- domino pieces for a non-overlapping covering of the mutilated 
checkerboard: Each piece contains two squares, and there are iV2 - 2 squares in the mutilated 
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Figure 2.9: Modeling Domino Overlap as a Set of Inequalities 

checkerboard. Therefore, one can put at most 7V2-2 J  = N2-3 non-overlapping domino pieces. 2    J  ~~      2 

Actual attempts to cover the mutilated checkerboard with odd sizes readily give an optimal 
solution of the above value. 

If N is even, the original PHP does not put any additional restrictions on the number of 
pieces. However, none of the attempts to cover the mutilated checkerboard by domino pieces 
achieves the desired bound of ^-^, all constructed solutions provide at most ^-~ pieces. 
Neither PHP nor LRP provide a tight upper bound for even-sized mutilated checkerboards. 
Nonetheless, the heuristic of two-coloring the mutilated checkerboard and applying PHP to the 
monochrome set of squares of smaller size completes the proof of the fact that ^^ is actually 
the optimal value for covering the mutilated checkerboard with even sizes. If we color the 
original checkerboard in usual black-and-white chess colors (see Figure 2.7) and then cut off 
2 opposite corner squares (of the same color), the remaining mutilated checkerboard contains 
unevenly colored square sets. The checkerboard presented in Figure 2.7, for example, has 30 
black squares and 32 white squares. Since each domino piece contains 2 squares of the opposite 
colors, applying PHP to a smaller set of black or white squares, we obtain the tight upper bound 
of ^=^. This argument completes the proof of the Mutilated Checkerboard problem by HPHP. 
Such a modification of PHP is favorable in comparison with LPR and the original PHP, because 
it is capable of deriving the optimal value of the goal function.  As we mentioned before, 
Linear Programming Relaxation provides N2-2 as an upper bound. According to Theorem 1, 
if applied, PHP outputs exactly the same upper bound. 

The idea of two-coloring is a simple elegant heuristic that allows to apply the Hidden 
Pigeonhole Principle and derive the tight upper bound. After being known for several dozen 
years, this application of HPHP might seem to be too simple to stimulate the development of 
alternative methods. We introduce the Firm Tiling problem as an example of a problem which is 
hard to solve without prior knowledge of the appropriate heuristic. For example, multi-coloring 
does not help to find the desirable matching between tiles, checkerboard squares, pigeons and 
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holes. 
Theory of Integer Programming suggests to apply Integer cuts, for example, Chvatal- 

Gomory's cuts, to extend the set of valid inequalities. The main idea of Chvatal-Gomory's cut 
(CG-cut) is to use the integrality of variables in feasible solutions. If a weighted sum of the 
inequalities derived so far contains the left-hand side with integer coefficients, the right-hand 
side can be rounded down to the nearest integer: J2?=i <*ixi < b implies YliLi aixi < IAI> f°r 

integer a, and Xi i = 1,..., N. In a certain sense CG-cuts look as simple as the original 
Pigeonhole Principle. However, CG-cuts allow to derive constraints that cannot be obtained 
from the initial set of inequalities by taking weighted positive sums. 

We, first, demonstrate the correctness of the Integer Programming formulation of the 
Mutilated Checkerboard problem and then derive an upper bound for it by means of Chvatal- 
Gomory's cuts and the Hidden Pigeonhole Principle. 

Since we are about to apply some of the techniques of Integer cuts to the Mutilated 
Checkerboard problem, we first demonstrate simple reductions from Integer Programming 
theory. For example, Lemma 1 builds a reduction from the set of pairwise constraints with 
0/1-vertex variables to the Exclusive Rule for a clique KN, where a clique is a complete graph 
with N > 2 vertices. 

Lemma 1 If a clique I<N admits exclusively 0/1-assignments to its vertices V\,...,VN and, for 
each pair of vertices (ut, Vj), at most one vertex can be assigned to 1, then there is at most one 
vertex assigned to 1 in the whole clique KN- 

Proof: There are N^N2~
1) inequalities of the type xt + xt < 1. We would like to prove that 

this collection of constraints implies a single clique inequality J2iLi xi < 1 (Exclusive Rule) for 
0/1-variables x%: e {0,1} i = 1,..., N. We prove it by induction on the number of vertices. 
Induction Base: If N = 2, the given inequality and the clique inequality xi + x2 < 1 coincide. 
Induction Step: Suppose that we can derive all N clique inequalities for each of the iV 
sub-cliques of size N — 1. If we sum them up, we get: 

N N 

which implies that (N - 1) £ x{ < N or, equivalent^, £ x% < N/(N - 1). Since TV > 2, 
L_£LJ - Li-j-_L_j - i. if we apply CG-cut to the last inequality, we get the desired iV-clique 
inequality: 
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Four (or less) splits that form the border of the square (?', j) correspond to four variables 
that model placing of domino pieces (tiles). Corner or side squares border with only two 
or three internal splits. According to Lemma 1, if we consider all six (or less) pairwise 
inequalities (2.9-10) involving four variables bordering a checkerboard square, CG-cuts provide 
the Exclusive Rule for the clique associated with the square. This Exclusive Rule corresponds to 
the requirement of non-overlapping of domino pieces over the square (i, j). The addition of the 
clique inequalities derived by CG-cuts to the initial set of constraints constitutes a representation 
change of the IP problem. 

Lemma 2 If clique inequalities for all squares of the NxN mutilated checkerboard (N is even) 
are added to the set of constraints, the optimal value of the relaxed Linear Programming 
problem is N ~4. 

Proof: Consider the following subset of clique constraints: Pick a monochrome subset of 
squares of smaller size and sum up all the clique constraints corresponding to these squares (of 
the same color). Each clique constraint is an unweighted sum of four (or less) clique variables 
x,-j + xi2 + Xi3 + Xi4 < 1. Since squares of the same color do not share sides, the sum of all clique 
constraints corresponding to squares of the same color is an unweighted sum of variables. On 
the other hand, all variables are presented in the final sum, because a legitimate placement of a 
domino piece covers squares of both colors. Since the number of clique constraints corresponds 
to the number of monochrome squares of smaller size, the sum of the constraints establishes a 
tighter bound for the goal function J2 xi < ^y^- Knowing this bound, it is easy to come up 
with a solution for an even-sized Mutilated Checkerboard problem that attains this value.   ■ 

Thus, the proof that uses HPHP, relies on additional knowledge that each domino piece 
covers a bi-chromatic configuration, whereas the combination of LPR with CG-cuts takes into 
account this argument automatically. CG-cuts expand the set of constraints by adding clique 
inequalities for all checkerboard squares. After that LPR solves the new Integer Programming 
problem. We identify the expansion of the constraint set with the representation changes for 
the original Integer Programming problem. If the two-coloring heuristic were not known, then 
LPR with CG-cuts could be used to obtain the tight upper bound of ^y^. After that, it is 
relatively easy to construct a solution attaining this value, which is proven to be optimal. The 
relations between HPHP and LPR with Integer cuts in solving the Mutilated Checkerboard 
problem are very similar to those between PHP and LPR. 

The Firm Tiling problem does not admit the proof by the original PHP, because an obvious 
fractional solution x*^ = 1/2 is feasible for a relaxed LP problem and the "middle-cut" 
requirement 

i:Uxij = T.U 1 = 1^1 « = i,2,...,5 
Ef=i^i = Ef=i5 = 3>l    j = l,2,...,5 
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Figure 2.10: Modeling a Firm Tiling of a 6x6 Checkerboard. 

is satisfied for all internal splitting lines. However, brute-force attempts to construct a complete 
firm tiling fail to provide an optimal 18-tile solution. The best firm tiling consists of at most 17 
non-overlapping tiles, Figure 2.8 shows one of such tilings. 

Nonetheless, the Hidden Pigeonhole Principle is capable of setting the tight upper bound of 
17 tiles for this problem. To preserve the beauty of the elegant solution by HPHP for now, we 
first establish the tight upper bound through the combination of LPR and CG-cuts. We show 
that if one more constraint 

E4 + I>o->17 (2.12) 

is added to the original IP problem, the set of feasible integer solutions becomes empty. 
Figure 2.10 presents 6x6 checkerboard with 0/1-variables assigned to its internal splits. To 

avoid superscript notations we denote xv- as Xij and x\- as y,j. Since x^ and yij are integer, 
inequality (2.12) implies 

Hxij + T,yij > 18- (2.13) 

In its turn, the latter inequality implies that the whole checkerboard should be covered 
by tiles. Since clique inequalities prohibit tiles from overlapping, each square is covered 
exactly by half-a-tile2. This is not a surprising conclusion, as we are attempting to cover a 6x6 
checkerboard by 18 non-overlapping tiles. 

Lemma 3 Inequality (2.13) and clique inequalities (2.11) for all squares of the 6x6 checker- 
board imply "double-firm" tiling. 

2This fact can be proved by considering a subset of clique constraints corresponding to a monochrome set of 
checkerboard squares in the way similar to the Mutilated Checkerboard problem. 
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Proof: We prove the statement of the Lemma by induction. In the induction base, we show 
it for the leftmost vertical splitting line. Due to the symmetry this proof remains unchanged for 
horizontal splitting lines. 

Induction Base: If we consider the leftmost column of a checkerboard presented in Fig- 
ure 2.10, inequalities (2.9-10) and (2.13) imply the following six equalities: 

xn + yii = 1    x2\ + yii + j/21 = 1   231 + 2/21 + 2/31 = 1 (2.14) 

«61 + 2/51 = 1    «41 + 2/31 + 2/41 = 1    «51 + 2/41 + 2/51 = 1 (2-15) 

The "middle-cut" requirement for the leftmost vertical splitting line corresponds to the follow- 
ing inequality: 

Ef=i^i>l (2-16) 

Sum of equalities (2.14) and (2.15) produces a new constraint: 

Ef=i^i + 2E?=i%i = 6 (2.17) 

Now we can subtract (2.16) from (2.17) and divide it by two: 

5 5 

2^2yji<5   implies   ^2/ji < 2.5 (2.18) 
i=i j=i 

Since all yj\ in the left-hand side of inequality (2.18) are integer variables, we can apply CG-cut 
to obtain a new (tighter) inequality: 

E-=i2/,i<2 (2.19) 

In its turn, constraints (2.17) and (2.19) imply 

£•=1 XH > 2 (2.20) 

Induction Step: Suppose that we have proved that inequalities (2.11) and (2.13) imply the 
"double-firm" tiling for jo — 1 leftmost columns of the checkerboard (1 < jo — 1 < 4). It 
implies that 

E?=i*ij>2    j = l,...,jo-l (2.21) 

Consider the tiling of left jo columns. All tiles y^ = 1 with i < j0 cover two checkerboard 
squares in left j0 columns, the same is true for tiles x^ = 1 with i < j0. These tiles contribute 
two to the amount of covered squares in the discussed portion of the checkerboard.   Tiles 



34 CHAPTER 2.  COMBINATORIAL OPTIMIZATION PROBLEMS 

Xij0 = 1 contribute one to the number of tiled squares in left j0 columns. If we count the 
number of tiled squares in left jo columns according to the above observation and take into 
account that each square should be covered by a tile, we get the following equation: 

io     5 jo —1   6 6 

E E 2y.-i + E E 2x*i + Ex™ = 6*> <2-22) 
j=l i=\ j=l i=l i=l 

Since a "single-firm" tiling requires £f=1 xijo > 1, equahty (2.22) and "firmness" imply 

io    5 io—1   6 

E E 2W + E E 2xH ^ 6*> - 1 (2-23) 
i=i«=i i=i *=i 

Inequahty (2.23) can be divided by two: 

io     5 io—1   6 

E E Wi +J2H *H < 3io - 1/2 (2.24) 
j=ii=i j=i j=i 

If we apply CG-cut to inequality (2.24), we get a tighter constraint: 

io    5 io-l   6 

EE^+EE^3-?o-l (2.25) 
i=ii=i i=i 2=1 

which together with equahty (2.22) imply the "double-firm" tiling of j0th vertical splitting 
line: 

£f=i^o>2 (2-26) 

Lemma 3 constitutes the hardest part of the Firm Tiling problem. Were we given the 
"double-firm" tiling requirement as the part of the initial problem, a simple application of 
the Pigeonhole Principle would provide the negative (infeasible) answer: Since there are ten 
splitting lines, each passing the middle line of at least two tiles, and none of the tiles can be 
shared by splitting lines in such counting, one needs at least 20 tiles for a "double-firm" tihng, 
in which case they would overlap. The Integer cuts technique demonstrated in Lemma 3 proves 
infeasibility through deriving the "double-firm" tihng requirement from a required "single- 
firmness" and the completeness of tihng (2.13). Since inequahty (2.13) is actually an equahty 
for the 6x6 checkerboard, the "double-firm" tihng inequalities make the Firm Tihng problem 
infeasible. 

From a glance, Integer cuts seem to be manipulating with halves and other fractionals in 
a beneficial manner.  However, it is not just a game with fractionals.  Integer cuts perform 



2.6. HPHPMIMICKINGLPR WITHCHVATAL-GOMORY'SCUTS 35 

methodological "squeezing" of the polygon of feasible solutions remaining all integer solutions 
feasible. Moreover, new constraints obtained through Integer cuts can not be derived by taking 
positive weighted sums of the existing constraints. 

Although both problems presented in this section do not admit proofs by the original 
Pigeonhole Principle, it is possible to perform a representation change of the problem statements 
and transform both problems into ones that admit proofs by the Pigeonhole Principle. We call 
such method of solving Integer Programming problems as the Hidden Pigeonhole Principle 
(HPHP). 

Such application of HPHP are useful mainly for deriving the tight upper bound. However, 
for some problems precise knowledge of the optimal value allows AI planning systems to 
construct an optimal solution. For the problems presented in this section this can be done, 
for example, by placing domino pieces randomly or greedily and applying the backtracking 
techniques when necessary. Success in constructing an optimal solution from the optimal value 
depends heavily on planning domain properties. Nonetheless, without a HPHP application the 
optimal value would be unknown, and any attempts to construct a solution attaining non-tight 
upper bound would fail. 

2.6   HPHP Mimicking LPR with Chvatal-Gomory's Cuts 

In this section we give an example of a simple problem illustrating how the "Hidden" Pigeonhole 
Principle can mimic the combination of Chvatal-Gomory's cuts and Linear Programming 
Relaxation. 

Air Traffic Problem: Suppose that there are N airports in the country, each is 
capable of routing flights to at most M destinations. What is the maximum number 
of flights throughout the country? 

There is no issue in determining the maximal number of flights for the whole country as 
long as either M or iV is even, and the answer is MN/2. However, as soon as both M and N 
are odd, at least one of the airports has to schedule strictly less than M flights. 

In Integer Programming, the above argument would be resolved through Chvatal-Gomory's 
cut. If Xij denotes the presence of a flight between cities i and j, then 

E^iEf=i xtJ<MN (2.27) 

due to double-counting flights originating from two different cities3, implies 

Ef=2 E£\ *ij < *¥■ (2-28) 
3It would be unwise to route a flight from city i back to city i. 
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If one applies a CG-cut to inequality (2.28), the resulting inequality 

V7V   Y^-1 <  \MN I 

would imply that for the case when both M and N are odd, one of the airports is running strictly 
under the full-scale loading. 

The Pigeonhole Principle would imitate Integer cuts by deriving the contradiction. Suppose 
that all airports are fully loaded, i.e. M flights are scheduled for each of them. We show that 
in this case, one of the airports is scheduled for at least M + 1 flights. Note, that MN/2 is 
not integer. Suppose that every airport is loaded with at least M flights. Then, consider the 
overall assignments with M1L=1 flights (create the hole of this capacity). Such a loading is 
impossible according to the Pigeonhole Principle. In this application of PHP, outbound flights 
are the pigeons, overall number of flights is the hole of capacity [^J • Thus, the artificially 
created hole does not have enough capacity, hence, there are routed |_^r J + 1 or more flights 
overall. Now we use PHP again: Since every flight connects two destinations, there will be 
at least MN + 1 destinations accounted from all flights. Now the overall number of flights 
contains at least MN + 1 pigeons, each airport is the hole of capacity M. Contradiction. 

Note, that in the above application of PHP, one can notice an elegant swap between the 
pigeons and the holes. Even for such a simple task as the Air Traffic problem, the application 
of the Pigeonhole Principle is "hidden" according to our classification, as we had to come with 
a non-existing hole of capacity MN

2~
l. 

2.7   Implications for Resolution-Based Proof Methods 

If we introduce variables z8J indicating that pigeon i is in hole j, then the Pigeonhole Principle 
with m pigeons and n holes can be modeled by two groups of constraints: 

Xi\ V xn V • • • V xin for i=l,...,m (2.29) 

^xik\J^xjk   for i^j,   for k=l,...,n (2.30) 

First group of constraints forces every pigeon to be placed in at least one hole. Second 
group of constraints does not allow any pair of pigeons to occupy the same hole. Thus, PHP 
is re-stated as a conjunction of all disjunctive clauses (2.29-30), i.e. in a standard Conjunctive 
Normal Form (CNF). 

Resolutions of clauses is one of the most common methods of simplifying boolean CNF 
formulae. It looks for a variable that is shared by two clauses with different polarities and 
combines these clauses without the shared variable. For example, for the following formula 
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(Vi V -V2 V -n) A(V2 V Vi V --VJO (2.31) 

the resolvent is 

(ViV^V-ViV-'Vs) (2.32) 

Statement (2.32) is implied by the original clauses of (2.31). Extended resolution is a 
generalization of the resolution method that allows the introduction of new variables as the 
combination of existing ones. It has been shown that if one applies the resolution method to 
the Pigeonhole Principle stated in (2.29-30), for m > n it would require exponential number 
of resolutions [1]. This is, the shortest length of the sequence L\, L2,..., Lp, 0, where each 
L( is either the original clause or the resolution of two clauses from the prefix sub-sequence 
Li, £2,..., Li-i, is exponential on n. 

Some Linear Programming methods, on the other hand, guarantee polynomial worst-case 
complexity. Furthermore, it has been shown that the constraints of a 0-1 IP problem can be 
expressed in a logical form [33]. The Pigeonhole Principle stated in (2.29-30) is exactly a 0-1 IP 
problem. However, a brute-force mimicking of LP constraints possesses an explosive danger, 
as some of compactly written inequalities from Linear Programming would require much more 
space, if interpreted in a boolean form. Table 2.1 illustrate the danger of blind copying methods 
of Linear Programming. 

Linear Programming Logic 

X\ + %2 + ^3 + #4 < 3 x\ A X2 A xj A £4 = False 

x\ + X2 + xy-\- £4 < 2 
(xi V X2 V £3) A (xi V^V a?4)A 

(x\ V13V X4) A (x2 VS3V X4) = False 

X\ + %2 + %3 + %4 < 1 

{x\ V #2) A (#i V £3) A (x\ V a?4)A 
(x2 V £3) A (x2 V £4) A (£3 V £4) = False 

Table 2.1: LP and Logic Constraints. 

McKinnon and Williams suggested a compact way of bookkeeping [48]. The "greater or 
equal" boolean predicates (possibly nested) ge(k, {Pi, P2l..., Pn}) mean "k or more propo- 
sitions Px,P2,...,Pn are true." Using this notation one can re-write Table 2.1 in a compact 
Logical form, see Table 2.2. 

Hooker [20] and Ginsberg [31 ] considered ge()-predicates and showed that extended resolu- 
tions can be used effectively in processing logical theories. In particular, Ginsberg showed that 
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Linear Programming Logic 

X\ + X2 + Xs + X4 < 3 ge(l, {-1x1, -1X2, ->a;3, -ix4}) 

X1+X2 + X3 + X4<2 ge(2, {^xi, -1x2, ^x3, ~tx4}) 

X1 + X2 + X3 + X4< 1 ge(3, {->Xi, ^x2, ->x3, -1X4}) 

Table 2.2: LP and Compact Logic Constraints. 

in such case, the Pigeonhole Principle stated in (2.29-30) can be proved to be unsatisfiable in 
0(n5) steps [31]. ge()-predicates look very much like inequalities from Linear Programming. 
This fact stimulated our efforts in applying both the Pigeonhole Principle and Linear Program- 
ming Relaxation to problems stated in the Integer Programming form. The other stimulus in 
bringing knowledge from Logic to Integer Programming was to change the direction of the 
usual research flow, as the vast majority of attempts tries to bring techniques from Integer or 
Linear Programming into Logic, thus, not so much has been done in the opposite direction [81]. 

2.8   Tough Nuts for the Pigeonhole Principle 
Not every problem that is traditionally attributed to the Pigeonhole Principle can be represented 
in the Integer Programming form. In this section we introduce two problems that can be solved 
by the PHP after sophisticated representation changes. However, modeling them as IP problems 
is a challenge for a problem solver. First problem has a continuous nature that prevents it to be 
modeled as an IP problem, second problem possesses an explosive combinatorial nature in its 
description. These two problems are aimed on demonstrating that the length of the description 
of the problem itself and its solutions might determine the success of applying the Pigeonhole 
Principle. 

Circle Covering Problem: One is given a circle of the diameter 10 and 10 rect- 
angular strips, nine of which have the unit width and tenth has the width of 1 - e 
with e > 0. Is it possible to cover the entire circle by these ten strips? 

The amount of circle covered by a unit-wide strip in the circle covering problem depends 
on the location of the strip. In particular, the area of the intersection of the circle with the strip 
is maximal, if the center (symmetry) line of the strip goes through the center of the circle. To 
apply the Pigeonhole Principle, one needs to apply a representation change to create standard 
pigeonhole pigeons and holes whose capacity would not depend on the location of the holes 
(strips) relatively to the center of the circle. The additional complication in this problem is that 
pigeons (circle area) can contribute simultaneously to several holes (when strips intersect). 
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Figure 2.11: Re-distributing the Measure of the 2D Circle 

Fortunately, it is possible to perform a simple representation change, so that to create a 
certain measure that is invariant to the placement of the strip. Figure 2.11 illustrates the idea 
of re-distributing an initial uniform measure of the circle. If we intersect a 3D sphere with two 
parallel hyperplanes, unit distance apart, the surface area of the sphere between the hyperplanes 
is invariant to the actual intersection, as long as the intersection of each hyperplane with the 
sphere is not empty. This property hints on how we to re-distribute the measure of the circle: 
We weigh every strip by the surface area of the projection of the strip on the surface of the 3D 
sphere (or half-sphere for the simplicity of the picture). Thus, each unit strip (hole) has the 
capacity of at most 1/10 of the whole circle's amount, no matter how it intersects the circle. 
The last, tenth strip has the capacity of 1/10 — 5, with 5 > 0. Hence, the overall capacity that 
all strips (holes) can hold is at most 1 — 8 < 1. 

Triangle Cutting Problem: One is given an equilateral triangle, which is split into 
smaller triangles by three sets of N equi-distant lines, parallel to each side of the 
triangles. Can one cut a set of parallelograms out of such triangle if cutting only 
along the splitting lines? 

The problem of solving the Triangle Cutting problem appears to He in modeling it in 
an acceptable way. The enormous amount of possible scenarios in cutting the triangle into 
parallelograms seems to stop any initial attempt of accounting them all. Nonetheless, the 
Triangle Cutting problem admits a simple solution by the Pigeonhole Principle after an elegant 
representation change that identifies the invariant of the cutting procedure. Figure 2.12 shows 
one of the possible cuttings of a parallelogram off a triangle with N = 5. Note, that the 
described splitting of the triangle produces a family of identical (smaller) triangles with two 
different orientations. Figure 2.12 also shows smaller set of shaded triangles. 

In a certain sense, the proof of the Triangle Cutting problem mimics the proof of the 
Mutilated Checkerboard problem (see Section 2.5). Each parallelogram contains equal number 
of triangles of both orientations. Since one of the equi-oriented sets is strictly smaller initially, 
it is impossible to cut the triangle into parallelograms along the splitting lines. The Triangle 
Cutting problem hints on how to generalize the Mutilated Checkerboard problem:  If one 



40 CHAPTER 2.  COMBINATORIAL OPTIMIZATION PROBLEMS 

Figure 2.12: Cutting a Parallelogram from a Triangle with N=5 

is allowed to cut off rectangles of any finite, connected subset of squares S on the infinite 
checkerboard with at least one side of each rectangle of even size, such cutting procedure can 
succeed only if the sizes of monochrome sets of squares in S are the same. 

2.9    Summary 

In this chapter we considered different methods of attacking combinatorial optimization prob- 
lems. Although the Pigeonhole Principle and Linear Programming Relaxation seem to live in 
completely different worlds, we showed that PHP and LPR have the same bounding power. 
Moreover, one is the dual of another. Such an unpredictable relation became possible after we 
brought both methods to the "common ground" of Integer Programming and drew a splitting 
line between the applications of the Pigeonhole Principle that deal with the original objects 
of the problem and the applications of the Hidden Pigeonhole Principle that deal with various 
extensions or constructions based upon the original objects of the problem. In its turn, we 
demonstrated that proofs by the Hidden Pigeonhole Principle are in many ways similar to 
combinations of Integer cuts and Linear Programming Relaxation. 

The results of this chapter enable us to state the following conclusions: 

• Resolution-based methods keep pigeons integer, whereas extended resolutions may "cut" 
pigeons into pieces, manipulate with fractional pigeons and perform a "reconstructive 
surgery" in the end, if necessary. Such a "cruel" treatment of pigeons sometimes results in 
a huge performance win, for example, the complexity of the logical proof of the simplest 
formulation of the Pigeonhole Principle goes down from exponential to polynomial. 

• Linear Programming Relaxation applied to a minimization Linear Integer Programming 
problem is actually a Linear Programming analogue of the Pigeonhole Principle. As a 
consequence, it is the dual of a correspondent maximization IP problem. 
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• The "Hidden" Pigeonhole Principle has the same nature as the combinations of Integer 
cuts and LPR. For example, HPHP can mimic the sequence of Chvatal-Gomory's cuts 
and LPR. 

• Through the set of successes and failures demonstrated in this chapter, one can witness 
the Occam's Razor Principle in action: In multi-disciplinary approaches, those methods 
of modeling problems and deriving solutions that require shorter descriptions are more 
preferable. 
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Chapter 3 

On-Line Search 

In this chapter we apply the methodology of hybrid approaches to the on-line search problem. 
Whereas in Chapter 4 we will be focused on the concluding Constructing Hybrid Methods 
phase, the current chapter contains Selection, Creating the Environment and Analysis phases. 

The on-line and off-line search problems are concerned with search in partially or in 
completely known domains by an agent with limited lookahead. Since problem domains 
are not known in advance in the on-line version of the problem, the path finding algorithms 
amenable for this problem need to gather information in the surrounding world to locate a 
goal state and a path leading to it. Since for this type of problems an agent needs to explore 
the environment as well as to look for a goal, and agent's knowledge about the surrounding 
world is limited by a neighborhood centered at the current state of the agent, we call search 
problems of this kind goal-directed exploration problems or, alternatively, agent-centered 
search problems. Examples of such problems include: 

• Autonomous mobile robots that have to find the office of a given person in an initially 
unknown building, or a previously known building which is currently under repairs. 

• Software agents that have to find World Wide Web pages containing desired information 
by following links from their current page. CMU's Web Watcher, for example, complies 
with this agent-centered strategy [2]. 

Both AI and Theory researchers have investigated the problem of reaching a goal by an 
agent with limited lookahead in an initially unknown domain. Difference in terms, the variety of 
scenarios, different foci make it difficult to extract the most beneficial features from approaches 
thatbelong to different areas. Table3.1 shows a relevant fraction of Table 1.1 regarding the goal- 
directed exploration problem. In particular, prior knowledge can be a powerful tool in cutting 
down the search effort, but it usually have little influence on the worst-case complexity. On the 

43 



44 CHAPTER 3.  ON-LINE SEARCH 

AI CS Theory 

• Preprocessing 

- Representation 
Changes 

• Data 
Structures 

• Worst-Case 

- Prior 
Analysis 

Knowledge • Optimal 
Algorithms 

• Empirical 
Performance 

• Approximate 
Algorithms 

Table 3.1: Advantageous Features of AI and CS Theory for On-Line Search 

other hand, the algorithms that achieve the worst-case complexity seem to be too "cautious" and 
do not demonstrate strong empirical performance, when applied to on-line search problems. 

In Chapter 4 we show how some of CS theory and AI algorithms can be combined to get 
the best of both worlds: Theoretical component contributes worst-case guarantees, whereas AI 
component of the hybrid method enables an agent to utilize prior knowledge to guide search 
until it proves to behave poorly. The current chapter introduces the problem, the terminology, 
assumptions and overviews existing algorithms from CS theory and AI. 

3.1   Agent-Centered Technologies for On-Line Search 

A variety of approaches from AI and CS theory are applicable to the problem of goal-directed 
exploration [71]. However, methods from distinct scientific areas often use different languages 
and are focused on finding answers to different questions even within the same problem 
framework. Table 3.2 provides a brief comparison of CS Theory and AI terminologies and foci 
regarding the goal-directed exploration problem. 

An abstract version of the goal-directed problem has been known to the theoretical com- 
munity as Treasure Hunt. Various modifications of the problem of exploring unknown graphs 
has been also considered in CS theory. Deng and Papadimitriou [13] discovered the depen- 
dencies between the worst-case complexity of exploring a directed unknown graph and the 
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Aspect CS Theory AI 

Problem 
name 

Learning Unknown Graphs, 
On-Line Chinese 

Postman Problem, 
Treasure Hunt 

Exploration of 
the Environment, 

Goal-Directed 
Exploration 

Terms 
Vertices, Edges, 

Untraversed Edges, 
Paths 

States, Actions, 
Limited Lookahead, 

Prior Knowledge 

Foci 
Worst-Case Complexity 

Average-Case 
Complexity 

Empirical 
Performance 

Table 3.2: CS Theory and AI Terminologies. 

deficiency - the measure of how close the unexplored graph is to being Eulerian. Awerbuch 
et al. [3] investigated the worst-case complexities of "piecemeal" learning and Treasure Hunt 
problems, where an agent is required to return to the starting position for recharging every so 
often. However, researchers from CS theory has been mainly concerned with the worst-case 
complexities of solving static problems of Graph Theory, almost completely ignoring the fact 
that the empirical performance and the worst-case complexity can differ significantly. Another 
issue of real-life goal-directed exploration problems is prior knowledge that is often readily 
available in form of heuristic values. This knowledge can essentially cut down the (empirical) 
search time, but existing theoretical approaches are often not able to utilize heuristic values, 
because they were not designed with this thought in mind. 

On the other hand, prior knowledge has been known as providing good guidance and cutting 
down search time in practical AI algorithms. Theoretical analysis of on-line search methods 
seems to ignore prior knowledge, because it does not improve the worst-case complexity. 
Furthermore, theoretical analysis of the average-case complexity is known to be a hard task 
that depends on two factors - the domain instance and the initial distribution. A slight change 
in any of them can transform the problem from "solvable" into "very hard" and vice versa. 

The strength of AI methods comes from their "natural selection" out of the wide pool 
of heuristic-guided empirical algorithms. However, finding a proper heuristic function is a 
difficult task for complicated problem domains. In this chapter we show that the domain- 
heuristic relation is even more sensitive for on-line search than that for off-fine search. In 
Section 3.4.1 we present an example of the problem domain, where a very efficient in general 
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AI algorithm guided by a consistent, admissible heuristic can lose to uninformed algorithms, 
including itself1. In Chapter 6 we argue why the number of satisfied/unsatisfied clauses is not 
always efficient in guiding local mil-climbing procedures towards a satisfying assignment, after 
we interpret such procedures as agent-centered search methods. 

We need to note that the goal-directed exploration problem is different from off-line search 
problems, because off-line search algorithms are concerned with finding action sequences that 
reach goal states from start states in completely known state spaces. Since real-world AI 
problems are often too big to fit the memory of the computer, or downloading the problem 
domain completely may significantly slow down the performance, not all off-line algorithms 
consider the whole domain as represented in Memory. Moreover, several agent-centered 
methods has been successfully applied to and solved large off-line search problems, as if they 
were on-line search problems. This fact encourages us to study properties of on-line search. 

As we mentioned before, in the goal-directed exploration problem, the domain is not known 
in advance, and path finding algorithms need to gather information in the world to locate a goal 
state and a path leading to it. Besides this difference with off-line search problems, "teleporting" 
is not allowed in the on-line version of the problem and the complexity is measured as the length 
of the continuous walk performed by an agent until it reaches the goal state. Already these two 
features make goal-directed exploration very different from off-line search. 

Therefore, in order to solve this problem efficiently, it can be of high interest to combine 
heuristic-based search approach providing good performance for the cases when heuristics are 
reliable with exploration that will provide suboptimal performance guarantees, if heuristics are 
misleading. Thus, we can outline two paradigms of goal-directed exploration: pure exploration 
and heuristic-driven exploitation. Pure exploration approaches explore the state space using 
only knowledge of the physically visited portion of the domain. Heuristic-driven exploitation 
approaches, on the other hand, totally rely on heuristic knowledge in guiding the search 
process towards a goal state. Both approaches in their purity have disadvantages in solving 
goal-directed exploration problems: the first approach does not utilize available knowledge to 
cut down the search effort, the second approach follows the guidance of prior knowledge, even 
if it is misleading. In each particular scenario of on-line search we perform careful analysis of 
heuristic-driven exploitation algorithms in order to find out how much they may lose to pure 
exploration algorithms and to identify classes of problems, where the latter algorithms would 
consistently outperform the former ones. 

1 See Section 3.2 for the description of the goal-directed exploration problem and the definition of the heuristic 
types. 
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3.2   Goal-Directed Exploration Problem 

In this chapter we consider problems with reversible domains, i.e. those problems whose 
domains can be represented as undirected or bi-directed graphs. The latter means that every 
directed edge (action) has an opposite directed edge (reverse action), but by traversing an edge 
the agent does not automatically learn how to traverse the opposite edge unless it has traversed 
it before. The concept of goal-directed exploration corresponds to the behavior of a new-born, 
who has no initial knowledge about the surrounding world and explores it through acting. 
Some of the actions, like setting something on fire, does not immediately imply knowledge on 
stopping the fire, although we assume in this chapter that every action is reversible. 

We use the following notation: G = (V, E) denotes an unknown undirected graph, vstart € 
V is the start state (vertex), and G C V is the non-empty set of goal states. E{v) C E 
is the set of edges adjacent to vertex v. For simplicity, edges e G E are assumed to be of 
unit length length(e) = 1, although all the results can be easily extended to graphs with 
edges of arbitrary non-negative length. The goal distance h*(v) is the length of the shortest 
path following which an agent can reach a goal state from v. The weight of the graph is 
weight = 1/2 J2vev J2eeE(v) length(e) - the sum of the lengths of all edges, which in our case 
coincides with the number of edges \E\. 

If e € E has not been learned, then succe(v), the successor of v such that (v, w) = e, is 
unknown. To learn the edge, the algorithm has to traverse it. Initially, heuristic knowledge 
about the effects of traversing edges is available in form of estimates of the goal distances. 
Classical AI search algorithms attach heuristic values to states. This would force us to evaluate 
untraversed edges e G E(v) in v according to the heuristic value of v, since the successor of v 
is not yet known. We therefore attach heuristic values h(e) to edges instead; they are estimates 
of length(e) + h*(succe(v)), the shortest length of getting from v to a goal state when first 
traversing e. If all h(e) are zero, we say that the algorithm is uninformed. The algorithm is 
completely informed, iff h(e) = length(e) + h*(succe(v)) for all u G V ande G E(v). We say 
that heuristic values are consistent iff h(e) < length(e) + mmeieE^UCCe^ h(e') for all v G V 
and e G E(v). They are admissible iff h(e) < length(e) + h*(succe(v) for all v G V and 
e G E(v). 

The goal-directed exploration problem can now be stated as follows: 

The Goal-Directed Exploration Problem: Get an agent from vstart to a vertex 
in G if all edges are initially unknown, but heuristic estimates h(e) are provided 
upon request. 

We measure the performance of goal-directed exploration algorithms by the length of 
their paths from the start vertex to a goal vertex. This performance measure is realistic, since 
usually the time of executing walk dominates significantly the deliberation time of goal-directed 
exploration algorithms. 
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In Section 3.3 and Section 3.4 we describe several approaches relevant to goal-directed 
exploration as examples: pure exploration algorithms and heuristic-based exploitation 
algorithms.2 Our selection was based primarily on the efficiency of these algorithms along 
different dimensions. 

3.3   CS Theory Approaches 

Theoretical approaches are usually Pure exploration approaches that explore unknown graphs 
completely. They have no notion of a goal and consequently do not use any prior knowledge to 
guide search towards a goal location. However, they can be used for goal-directed exploration, 
since they visit all states during their exploration, including the goal vertices. One can then 
simply stop the algorithm when it accidentally hits a goal. Conversely, goal-directed exploration 
approaches explore all edges, if there is no goal. Thus, they can be used as exploration 
algorithms. Depth-First-Search (DFS) is one of such methods, it can be applied to the problem 
of exploring unknown, undirected graphs and guarantee that each edge is traversed at most two 
times. For Eulerian graphs, a simple algorithm of building a Eulerian tour (BETA) has been 
known since Euler [15] and Hierholzer [23]. Recently several researchers re-considered it as a 
graph-learning algorithm with linear worst-case complexity [41,13]. 

Building a Eulerian Tour algorithm (BETA): Traverse unexplored edges 
whenever possible (ties can be broken arbitrarily). If all edges emanating from the 
current vertex has been explored, re-traverse the initial sequence of edges again, this 
time stopping at all vertices that have unexplored emanating edges, and applying 
the algorithm recursively from each such vertex. 

Deng and Papadimitriou [13] showed that BETA traverses every directed edge at most twice 
Eulerian domains (a superset of undirected domains). This implies the following theorem: 

Theorem 3.1 BETA reaches a goal state of a given goal-directed exploration problem with a 
cost that is at most 0(1) x weight (to be precise: at most 2 x weight). 

m 

No uninformed goal-directed exploration algorithm can do better than BETA in the worst 
case. Consider, for example, the graph shown in Figure 3.1, whose directed edges are annotated 
with their lengths. 

Any goal-directed exploration algorithm can first traverse all edges with length c by travers- 
ing an edge adjacent to the start vertex and then (by chance) traversing the opposite directed 

2Other approaches have for example been discussed in CS theory [6, 8, 12], robotics [60, 46, 61] and AI 
[77, 76, 51]. 
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start goal 

Figure 3.1: A Worst-Case Example for all Uninformed Algorithms 

edge back. After that, it is in its starting vertex and cannot traverse unexplored edges any 
longer. It then has to re-traverse every edge of length c to be able to execute the last two 
unexplored edges at the end of each "ray," after which it is forced to execute the other edge of 
length c a second time to return to the starting vertex. Assume that there are k rays and the 
last ray traversed contains the goal vertex at its end. In this case, the total length of the path 
is (4k — l)(c — 1), the weight of the graph is Ike + 2k, and the ratio of the two quantities 
approaches 2 for large c. This implies the following theorem: 

Theorem 3.2 The worst-case complexity of uninformed goal-directed exploration algorithms 
is 0(1) x weight (to be precise: 2 x weight). 

BETA has the disadvantage that it does not make use of any prior knowledge to guide the 
search towards the goal. Given such knowledge, it is often unnecessary to explore all edges. 
However, BETA provides a gold standard for other goal-directed exploration algorithms. 

3.4   Heuristic-Driven Approaches 
AI researchers have long realized that heuristic knowledge can be a powerful tool to cut down 
search effort - and such knowledge is often readily available. Heuristic-driven exploitation 
approaches rely on heuristic knowledge to guide the search towards a goal state. 

3.4.1   Agent-Centered A* Algorithm 

Among heuristic-driven exploitation approaches, A* is one of the most popular off-line search 
algorithm that exploits heuristic knowledge. However, if applied in its original form to goal- 
directed exploration problems A* becomes very inefficient as it incurs new costs for moving 
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an agent from one place to another instead of "teleporting". Moreover, since the agent has 
to perform a continuous travel to a new location, the strategy of A* does not produce the 
best available action sequence for agent-centered search. Nonetheless, the "greedy" idea 
of performing the best currently available step appeared to be tempting and was repeatedly 
utilized in various heuristic-driven exploitation approaches. The list of such algorithms includes 
Incremental Best-First Search by Pemberton and Korf [58], the Dynamic A* algorithm (D*) by 
Stentz [72], the Learning Real-Time A* (LRTA*) algorithm by Korf [42], Prioritized Sweeping 
by Moore and Atkeson [50], the navigation method by Benson and Prieditis [5], etc. 

Thus, instead of minimizing at every step the sum of the distance from the starting node to a 
fringe node dist(vs, x) and the heuristic value h(x) at that node, as A* does, the agent-centered 
algorithm can minimize the sum of the distance from the current node to a fringe node dist(vc, x) 
and the heuristic value (h(x)). This tiny change dist(vs,x) + h(x) -^ dist(vc,x) + h(x) 
produces an extremely efficient agent-centered version of the A* algorithm, but drastically 
changes the flow of the exploration, thus, leaving the main question of this algorithm's efficiency 
completely open. Therefore, this agent-centered version of A* uses similar to A* minimization 
(greedy) step to find a path to the next unexplored edge in the currently known part of the graph, 
then moves the agent to that edge, traverses it, and repeats the process. We call this algorithm 
AC-A*: 

AC-A* (Agent-Centered A* Algorithm): Consider all paths that include 
traversed edges from the current vertex to an untraversed edge e emanating from 
already visited vertex w. Select a path with minimal expected length from these 
paths, where the expected length of a path is defined to be the sum of the length 
of the path from the current vertex to w plus h(e) (ties can be broken arbitrarily). 
Traverse the chosen path and the unexplored edge e, and repeat the process until a 
goal state is reached. 

AC-A* is very versatile: It can be used to search completely known, partially known, or 
completely unknown, undirected, Eulerian or non-Eulerian, even dynamically changing graphs 
and is able to make use of knowledge that it acquires during the search. For example, if it is 
informed about the effects of some actions, it automatically utilizes this information during the 
remainder of its search. 

AC-A* is known to be efficient under different problem scenarios. If AC-A* is totally 
informed, for example, it finds a goal state with cost h*(vstart) and thus cannot be outperformed 
by BETA or any other goal-directed exploration algorithm. Figure 3.2 shows the performance of 
AC-A*, BETA, BETA with short-cuts [71] and 4-VECA3 in exploring rectangular, bi-directed 
mazes of size 32 x 32 and variable density: 0% correspond to a random tree, 100% - to a 
complete rectangular maze. AC-A* outperforms all other algorithms in average with the only 
exception: it loses to VECA (see Chapter 4) on "hard-to-explore" sparse tree-like mazes. 

3See Chapter 4 for the description of VECA. 
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Figure 3.2: Average Exploration Time of Rectangular Mazes with Different Density 

In the next two sections we discuss the disadvantages of AC-A* regarding the efficiency of 
search. 

3.4.2   AC-A* Can Be Misled by Heuristic Values 

We show that it is possible that consistent, admissible heuristic values can degrade the perfor- 
mance of AC-A* so much that its performance is worse than (a) the one of uninformed AC-A* 
for the same goal-directed exploration problem and (b) the one of BETA (an uninformed algo- 
rithm) for all goal-directed exploration problems of the same size. The goal-directed exploration 
problem shown in Figure 3.3 is such a scenario. 

The problem domain is a bi-directed (Eulerian) graph which has the form of a tree and 
consists of a "stem" with several "branches." All edges are annotated with their lengths. (For 
convenience, we replaced each pair of directed twin edges by an undirected edge.) The stem 
has length xx for some integer x > 1 and consists of vertices VQ,VI,...,VXX. The following 
table enumerates all branches. 

number of branches    cost of each branch    states at which branches attach to the stem 

-2 

-3 

x—4 

1 
X+l 

X2 + X + 1 

X3 + X2 + X + 1 

vx , v2x , V3x, ■ ■ . , Vxx 

Vxx_x2,...,V2x2,Vx2,V0 

vx*,v2x3,V3x3, . ,f. 

v~ ,V2x4,Vx4,V0 
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branches 

1    1   etc. 
V0 V!   V2 V3 V4 V5 V6  V7 V8  V9V10V11V12V13V14V15V16V17V18V19V20V21V22V23V24V25V26V27=Vxx 

start the length of the stem 

Figure 3.3: A Bad State Space for AC-A* (here: x = 3) 

In Figure 3.3, for example, the stem has length 27, and there are 9, 3, and 1 branches, 
respectively, of cost 1, 4, and 13. In general, for each integer i with 1 < i < x there are xx~l 

branches of length T!f=o xj each. These branches attach to the stem at vertices vjx, for integers 
j; if i is even, then 0 < j < xx~{ - 1, otherwise 1 < j < xx~\ The starting vertex is v0 and 
the goal vertex is the terminating vertex of the longest branch. The weight of this graph is 

weight    — 
4xx+2 - 6xx+1+ 2 

(x - l)2 

This graph is sparsely connected and has a large diameter. Although it has been artificially 
constructed, our experiments show that similar situations can occur quite frequently in sparsely 
connected domains with large diameters. 

Now assume that h(e) = length(e). These heuristic values are consistent, and therefore 
admissible. AC-A* can then exhibit the following behavior: It starts at v0, travels along the 
stem to its end and then returns along the stem to its starting vertex. Next, it travels along the 
whole stem again (in the original direction) and visits the terminating vertices of all branches 
of length 1 on the way (in the order in which they are listed in the table above). It then 
switches directions again, travels along the whole stem in the opposite direction, and visits the 
terminating vertices of all branches of cost x + 1 on the way (again, in the order in which they 
are fisted in the table above), and so forth. When it visits the terminating vertex of the longest 
branch, it has found the goal and terminates. Thus, AC-A* traverses the stem x + 2 times and 
each branch twice (once in each direction), except for the longest branch, which it traverses 
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only once. The total length is 

xx+i + 2xx+2 - 6xx+1 + xx + x + 1 
length    = —z  

{x-\f 

The ratio of length and weight approaches I/Ax + 7/8 for large x. Thus, length and also 
the worst-case performance of AC-A* grows faster than the weight of the graph. 

We have already shown that the worst-case performance of BETA is always linear in the 
weight of the graph. For this particular example, the worst-case performance of uninformed 
AC-A* also grows linearly in the weight of the state space, if n is even: In this case, the branch 
that contains the goal attaches to the stem at the starting vertex. This property ensures that, 
no matter which edges uninformed AC-A* traverses, it can traverse every edge at most once 
before it reaches the goal. This is so, because in every undirected (bi-directed) graph the first 
vertex that BETA encounters in which it can no longer traverse an unexplored edge is the start 
state. But before this is the case, it must have explored the edge that leads from the starting 
vertex to the goal. Thus, it cannot traverse any edge more than once before it reaches the goal. 

This example shows that the domain-heuristic relation is more sensitive for the goal- 
directed exploration problem. The fact that a heuristic function majorizes the other one does 
not necessarily lead to a better performance for a heuristic-driven algorithms that uses the 
majorizing heuristic. Moreover, the guidance of a consistent, admissible heuristic in some 
domains can be even worse than the uninformed exploration (that ignores prior knowledge) for 
agent-centered search. In Chapter 7 we discuss the influence of some domain features on the 
complexity of search and the sensitivity of the the domain-heuristic relation. 

3.4.3   AC-A* is not Globally Optimal 

The actions of AC-A* are greedy, every time AC-A* provides the best available action, given 
the lack of information it has about the domain. Some authors even stated the hypothesis that 
the behavior of AC-A* optimal. We demonstrate, however, that its behavior is not globally 
optimal by showing that the worst-case performance of uninformed AC-A* over all goal- 
directed exploration problems of the same size is worse than that of BETA - a fair comparison, 
since both algorithms are uninformed. This issue, as well as the average-case complexity of 
AC-A*, were raised in [13] as an open problem. 

Uninformed AC-A* always moves the agent to the unexplored edge that it can reach by a 
path of the smallest length, traverses that edge, and repeats the process until the goal is reached. 
We can easily construct a graph on which uninformed AC-A* behaves (almost) identically to 
the partially informed AC-A* of the previous section. We use the state space from the previous 
section, but add an additional vertex to the end of every branch, as shown in Figure 3.4. 
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1    1  etc. 
V0 V!   V2 V3 V4 V5 V6  V7 V8  V9V1oV11V12V13Vi4V15V16V17V18V19V20V21V22V23V24V25V26V27=Vxlc 

t start 

Figure 3.4: Another Bad State Space for AC-A* (here: x = 3) 

Uninformed AC-A* can then exhibit the following behavior in this graph: It starts at v0 and 
travels along the stem to its end. Then, it returns along the stem to its starting vertex and visits 
the non-terminating vertex of every branch on the way (after each of which it immediately 
returns to the stem). From then on, it can behave identically to the partially informed AC-A* of 
the previous section after it had traversed the stem twice: It now knows the lengths of entering 
the branches whereas the partially informed AC-A* had only heuristic values available, but 
these coincided with the lengths. For this example, 

4xx+2 _ 4xx+i _ 2xx _ 2x + 4 
weight    =      

length    = 

{x-\f 
xx+3+4xx+2_6xx+l 3xx - x2 + x + 4 

(x-1)2 

and the ratio of length to weight approaches l/4a; + 5/4 for large x.  Thus, length = 
&(x) x weight. This implies the following theorem, since x = Q(log nj log log n): 

Theorem 3.3 The worst-case complexity of the uninformed AC-A* for a goal-directed explo- 
ration problem is Q(^^r^) x weight. 

This theorem provides a lower bound on the worst-case performance of uninformed AC-A*. 
It shows that the worst-case performance increases faster than the weight of the state space. We 
can also prove an upper bound, using - as part of the proof- a previous result in [62, 39]. 

Theorem 3.4 Uninformed AC-A * reaches a goal state of a goal-directed exploration problem 
with a performance of O(log n) x weight. 
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3.4.4   Learning Real-Time A* Algorithm 

Learning Real-Time A* Algorithm (LRTA*) [42] is known as a real-time search method whose 
efficiency depends on the quality of prior knowledge. It can be applied both to off-line search 
problems and to goal-directed exploration. LRTA* looks for the most promising vertex among 
neighbors of the current vertex and updates heuristic values, if necessary. If heuristic values 
are close to goal distances, or maintain similar quantitative relations, LRTA* (see Table 3.3) 
may find a goal state after exploring only a tiny fraction of the problem domain. 

procedure LRTA*(F, E) 
Initially, F(v) := h(v) for all v £ V. 
LRTA* starts at vertex vstart: 

1. v := the current vertex. 
2. If v £ Goal, then STOP successfully. 
3. e := argmineF [neighbor {v,e)). 
4. F(v) := min(l + F(neighbor(v, e))). 
5. Traverse edge e, update v := neighbor (v, e). 
6. Go to 2. 

Table 3.3: Learning Real-Time Algorithm (LRTA*). 

LRTA* was designed as a simple reactive algorithm with the guaranteed convergence. 
Unlike local hill-climbing procedures (see Chapter 6), LRTA* requires memory to keep the 
updated heuristic values. If heuristic values are close to the goal distance for all domain states, 
LRTA* may find the optimal path to the goal from any start state. Whereas some problem 
domains amenable to LRTA* can be often attributed to A* as well, the advantage of LRTA* is 
that it does not require to search the whole domain in the way A* does. LRTA* may construct 
a suboptimal solution first, and then improve it through repeated trials, so that the portion of 
explored state space is still tiny compared with the part of the domain that A* needs to explore 
to derive a solution [42]. 

However, there is a price that one can pay for a heedless use of LRTA*: Misleading heuristic 
values may steer away the search process up to the point, when LRTA* becomes very inefficient. 
This is especially problematic for the cases when prior knowledge is neither consistent, nor 
admissible, e-search and ^-search are both modifications of LRTA* [35] that were designed 
to reduce the inefficiency of LRTA* for problems of this type. In Chapter 4 we compare the 
behavior of LRTA*, AC-A* and other search algorithms for different heuristic functions. In 
Chapter 6 we discuss the relations between local hill-climbing methods, LRTA* and one of its 
versions - e-search. 
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3.5   Summary 
In this chapter we demonstrated that the domain-heuristic relation is more sensitive for on- 
line search problems than for off-line ones. Even a consistent, admissible heuristic can be 
more misleading for some on-line search algorithms than no prior knowledge. We also gave a 
negative answer to the open question on the optimality of AC-A*. Although it is a very efficient 
empirical algorithm, it loses to other uninformed exploration algorithms over all problems of 
the same size, and thus is not optimal. 



Chapter 4 

Variable Edge Cost Algorithm 

In the previous chapter we introduced the goal-directed exploration problem and several al- 
gorithms from the literature amenable to this problem. We considered two paradigms of the 
goal-directed exploration problem: Pure exploration and heuristic-driven exploitation. Algo- 
rithms attributed to the former paradigm, usually come from CS theory and are focused on the 
complete exploration of the problem domains. Heuristic-driven exploitation algorithms usually 
come from AI and establish strong empirical performance. However, in some complicated 
domains they can lose to pure exploration algorithms. 

Chapter 3 finished the first three phases of the methodology of of hybrid approaches applied 
to on-line search, namely, Selection, Creating the Environment and Analysis. We start this 
chapter with the conclusion remarks on the analysis of existing algorithms, then we switch to the 
Constructing Hybrid Algorithms phase, leaving the discussion on the Problem Classification 
phase for Chapter 7. 

4.1    The Drawbacks of Existing Algorithms 

In Chapter 3 we introduced algorithms from CS theory (BETA, Chronological Backtracking) 
and AI (AC-A*, LRTA*) that can be applied to on-line search problems. Theoretical algorithms, 
like BETA, do not make use of heuristic values to guide the search towards a goal state. AC-A* 
does utilize heuristic values, but can be misled by them up to the point where its performance 
is worse than the performance of BETA (an uninformed algorithm). This does not mean, of 
course, that one should never use AC-A*. If AC-A* is totally informed, for example, it finds 
a goal state with the cost that corresponds to the length of the shortest path from the starting 
location to the goal h*(vstart) and thus cannot be outperformed by BETA or any other goal- 
directed exploration algorithm. The problem with AC-A* is that it takes the heuristic values at 
face value, even if its experience with them shows that they should not be trusted. 

57 
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Of course, AC-A* does not know whether it should rely on the given heuristic values 
before it has gained experience with the state space and the values. We would therefore like 
to modify AC-A* so that it relies on the heuristic values until they prove to be misleading. 
It should then gradually rely less and less on the values, by switching from exploitation to 
exploration. This should be done in a way that would guarantee that the resulting worst- 
case performance over all goal-directed exploration problems of the same size can never be 
worse than that of the uninformed goal-directed exploration algorithm with the best possible 
performance guarantee (BETA). In this case, the misleading heuristic values do not help to find 
a goal state faster, but they don't hurt either. In the following, we describe how a variety of 
heuristic-driven exploitation approaches (AC-A* being one of them) can be modified to achieve 
such a performance guarantee. 

The complexity analysis of selected algorithms obtained from the Analysis phase of the 
hybrid approach is likely to produce a picture similar to one shown in Figure 4.1. In the goal- 
directed exploration problem, the worst-case complexity of BETA or Chronological Backtrack- 
ing is better than the worst-case complexity of LRTA* or AC-A*. However, for a sequence 
of experiments performed in unknown domains with some common features like graphs of 
similar size, density, diameter, etc., the empirical efficiency of heuristic-driven algorithms can 
compare favorably with one of BETA. Figure 4.1 shows a typical picture that represents both 
possible range of particular runs, from the shortest path to the worst-case scenario, and the 
average empirical performances for BETA, LRTA* and AC-A* search for a goal in sparsely 
connected domains. 

Performance Average 
Empirical 
Performance 

BETA       LRTA*      AC-A* Algorithms 

Figure 4.1: Worst-Case and Empirical Performances 

The goal of this chapter is to demonstrate how the best features of methods from AI and CS 
theory can be combined in a hybrid framework. 
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In Chapter 3, after completing the Analysis phase, we identified that pure exploration 
algorithms do not search for a goal, but they establish strong upper bounds. For the problem 
of goal-directed exploration such a bound is linear on the weight of the graph, the property 
that we would like to re-utilize in efficient combinations with heuristic-driven algorithms. On 
the other hand, heuristic-driven algorithms, for example, LRTA* and AC-A*, establish strong 
empirical performance unless the combination of the domain and heuristic values appear to 
mislead search up to the point when the chosen heuristic-driven algorithm may lose noticeably 
to a pure exploration algorithm. Therefore, we view the behavior of BETA on bi-directed 
domains (or one of Chronological Backtracking on undirected domains) as the leftmost bar in 
Figure 4.1, and complete the Constructing Hybrid Algorithms phase by combining it with 
either LRTA* or AC-A*. In the next section we introduce such an algorithmic framework 
that is built upon a beneficial combination of pure exploration algorithms with heuristic-driven 
algorithms. 

4.2    Our Approach: The VECA Framework 

We have developed a framework for goal-directed exploration of undirected or bi-directed 
domains, called the Variable Edge Cost Algorithm (VECA) [71], that can accommodate a wide 
variety of heuristic-driven exploitation algorithms (including AC-A* and LRTA*). We first 
describe a simpler version of VECA that applies to undirected domains, then we show how 
to generalize it for the bi-directed case. VECA relies on the exploitation algorithm and thus 
on the heuristic values until they prove to be misleading. VECA monitors the behavior of the 
exploitation algorithm and uses a pre-set parameter k to determine when the freedom of the 
exploitation algorithm should get restricted. VECA does it by estabhshing positive costs for 
frequently traversed edges. As soon as an undirected edge has been traversed k times or more, 
VECA restricts further traversals of this edge by the exploitation algorithm through estabhshing 
a positive cost for this edge. This action forces VECA to concentrate more on exploring a certain 
portion of the graph. As a result, VECA switches gradually from exploitation to exploration 
and relies less and less on misleading heuristic values. 

We describe VECA in two stages. We first discuss a simple version of VECA, called Basic- 
VECA, that applies to undirected domains, i.e. it assumes that an edge traversal identifies the 
twin of the edge, even if the twin has not been traversed before. Later, we drop this assumption. 
Throughout this chapter for any edge (v, w) € E we call the opposite edge (tu, v) <E E as the 
twin, whether the domain is undirected or bi-directed. 

Basic-VECA is described in Figure 4.2. It maintains a cost for each edge e G E that 
is different from length(e). These VECA costs guide the search. Initially, all of them are 
zero. Whenever VECA traverses an undirected edge for the first time, it reserves a positive 
VECA cost for it that will later become its assigned positive cost. First such edge gets a cost 
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Input: 
a goal-directed exploration problem, 

the value of Basic-VECA's parameter k (a non-negative, even integer), 
and a heuristic-driven exploitation algorithm (to be used in step 3). 

Basic-VECA uses three variables for each edge e e E: count (e) keeps track of how many 
times this edge has been traversed, reserve(e) is its reserved VECA cost, and cost(e) is its 
actual VECA cost. 

1. Set count(e) := cost(e) := 0 for alle e E. Set i := 0 and v := vstart. 

2. If u € G, then stop successfully. 

3. Consider all acyclic paths starting at v and ending at a vertex with an emanating 
untraversed edge. Select a path with minimal VECA cost from these paths, using 
the heuristic-driven exploitation algorithm to break ties. 

4. Consider all edges in the chosen path, one after another.  For each edge e in the 
sequence, do: 

(a) Traverse e from v to succe{v). 

(b) Set count(e) := count(e) + 1. 

(c) If count(e) = 1, then set i := i + 1 and afterwards reserve(e) := 2~\ 

(d) If count{e) > k and cost(e) = 0, then set cost(e) := reserve(e). 

(e) If count(e) > k + 1, then set cost(e) := oo. 

(f) Set v := succe{v). 

5. Go to step 2. 

Alternatively, step 3 can be replaced by: 

3' Consider all acyclic paths starting at v and ending at a vertex with an emanating edge 
whose VECA cost is zero. Select a path with minimal VECA cost from these paths, 
using the heuristic-driven exploitation algorithm to break ties. 

Figure 4.2: The Basic-VECA Framework 

of 1/ '2 reserved, second - 1/4, third - 1/8, and so on. Figure 4.3 shows the spanning tree of 
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Figure 4.3: A Tree of the Highest VECA Cost 

maximum VECA cost. Whenever VECA reaches an unvisited vertex, the just traversed edge 
should be included in the spanning tree. Inclusion of any other edge of the graph (dashed lines 
in Figure 4.3) would strictly decrease the VECA cost of the spanning tree. 

VECA assigns the reserved cost to an edge when it traverses it for the kth time (or, if 
k = 0, when it traverses an edge for the first time). Whenever an edge is traversed k + 2 
times, VECA assigns an infinite VECA cost to this edge, which effectively removes it from 
further consideration. The VECA costs are used as follows: VECA always chooses the least 
expensive path in terms of VECA cost that leads from its current state to an unexplored edge 
or, alternatively, to an edge with zero VECA cost. The exploitation algorithm is used to break 
ties. Initially, all VECA costs are zero and there are lots of ties to break. The more edges are 
assigned positive VECA costs to, the fewer ties there are and the less freedom the exploitation 
algorithm has. 

To gain an intuitive understanding of the behavior of Basic-VECA, consider a simple 
undirected graph which is a tree, and assume that Basic-VECA uses step 3. Figure 4.4 shows 
an undirected edge e that connects two components of the tree, X and Y, with X containing the 
starting vertex. To reach component Y, Basic-VECA has to traverse edge e first. Thus, e will 
get a reserved cost 2~% that is strictly bigger than the cost of any edge within component Y and 
the cost of any acyclic path within Y, because of the tail majorizing property: 2~* > J2j>i 2~j- 

Therefore, the exploitation algorithm can traverse e freely until it has been traversed k 
times. Then, Basic-VECA assigns this edge some positive VECA cost. At this point in time, 
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Component X Component Y 

Figure 4.4: A Simple Example State Space 

the agent is located in X (the component that contains the start state), since k is even and the 
agent alternates between both components. If Y does not contain any more untraversed edges, 
there is no need in traversing e anymore. Otherwise there is a point in time when Basic-VECA 
traverses e again to reach one of those untraversed edges in Y. When this happens, Basic-VECA 
prevents the exploitation algorithm from leaving Y until all edges in Y have been learned (this 
restriction of the freedom of the exploitation algorithm constitutes a switch from exploitation 
to more exploration): Because Y can only be entered by traversing e, this edge was traversed 
before any action in Y. Consequently, its positive VECA cost, when assigned from its reserved 
cost, is larger than the sum of reserved or assigned VECA costs of edges along any acyclic 
path in Y, because of the tail majorizing property. Thus, Basic-VECA cannot leave Y until all 
of Y's edges have been traversed. "When Basic-VECA finally leaves Y, the VECA costs of e is 
infinite, but there is no need to come back to Y again. 

In general, Basic-VECA traverses every undirected edge at most k + 2 times before it finds 
a goal state [71]. This implies the following theorem: 

Theorem 4.1 Basic-VECA with even parameter k > 0, solves the goal-directed exploration 
problem for any undirected, unknown graph with the complexity of 0(1) x weight (to be 
precise: at most (k + 2) x weight). 

A larger k allows the exploitation algorithm to maintain its original behavior longer, whereas 
a smaller k forces it earlier to explore the problem domain more. The smaller the value of k, 
the better the performance guarantee of VECA. If k = 0, for example, VECA severely restricts 
the freedom of the exploitation algorithm and behaves like Chronological Backtracking. In this 
case, it executes every edge at most twice (once in each direction, with the total complexity 
under 2weight(G)), no matter how misleading its heuristic knowledge is or how bad the choices 
of the exploitation algorithm are. No uninformed goal-directed exploration algorithm can do 
better in the worst case. However, if the heuristic values are not misleading, a small value of k 
can force the exploitation algorithm to explore the state space unnecessarily. Thus, a stronger 
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performance guarantee might come at the expense of a decrease in the empirical performance. 
The experiments in Section 4.4 address this issue. 

By now, we would like to discuss the effects of dropping the requirement of learning the 
twin edge after traversing one in bi-directed domains. This type of relaxation might force an 
algorithm to perform an additional exploration procedure every so often to actually learn the 
twin before assigning both edges the same positive cost. Thus, we apply almost the same 
framework to bi-directed domains. 

VECA is very similar to Basic-VECA, see Figure 4.5. In contrast to Basic-VECA, however, 
it does not assume that by traversing a directed edge one identifies its twin. This complicates 
the algorithm somewhat: First, the twin of an edge might not be known when VECA reserves 
a VECA cost for the pair. This requires an additional amount of bookkeeping. Second, the 
twin of an edge might not be known when VECA wants to assign it the positive VECA cost. 
In this case, VECA is forced to identify the twin: Step 4(e) explores all untraversed edges 
emanating from the same vertex as the twin edge (thus, including the twin) and returns to that 
state. This procedure is executed seldomly for larger k, since it is a rare case that a directed 
edge is traversed k times and the twin of that edge has not yet been learned. Because of this 
step, though, VECA can potentially execute any directed one more time than Basic-VECA, 
which implies the following theorem: 

Theorem 4.2 VECA, with even parameter k > 0, solves any bi-directed goal-directed ex- 
ploration problem with a cost of 0(1) x weight (to be precise:   with a cost of at most 
(k/2 + 2) x weight). 

For k = 0, VECA traverses every directed edge at most twice. Thus, its worst-case 
performance is at most 2 x weight and equals the worst-case performance of BETA. No 
uninformed goal-directed exploration algorithm can do better in the worst case if traversing a 
directed edge does not identify its twin in a bi-directed domain. 

Both Basic-VECA and VECA apply to goal-directed exploration in dynamically changing 
domains that change seldomly at discrete points in time. Basic-VECA provides a variety of 
scenarios for possible continuation after each domain change. For the case, when the agent is 
informed about all (visited) vertices with (new and old) unexplored emanating edges, the two 
main alternatives are: 

• Increase the parameter of VECA by two, change all positive VECA costs, continue 
exploration according to Basic-VECA with parameter k + 2. 

• Re-start goal-directed exploration from the current vertex by Basic-VECA with the lowest 
possible parameter 0. 
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Input: 
a goal-directed exploration problem, 

the value of VECA's parameter k (a non-negative, even integer), 
and a heuristic-driven exploitation algorithm (to be used in step 3). 

VECA uses four variables for each directed edge e 6 E: count(e) keeps track of how many times this edge has been traversed, reserve(e) is its reserved 
VECAcost, cost(e) is its actual VECA cost, and euler(e) remembers whether it has already been traversed as part of step 4(e). 

1. Setcount(e) := cost(e) := euler(e) := Oforalle £ E. Set t := Oandw := vstart. 

2. Ifv£G, then stop successfully. 

3. Consider all acyclic paths starting starting at v and ending at a vertex with an emanating imtraversed edge. Select a path with minimal VECA cost from 
these paths, using the heuristic-driven exploitation algorithm to break ties. 

4. Consider all edges in the chosen path, one after another. For each edge e in the sequence, do: 

(a) Traverse efrom v to succe{v). 

(b) Set count(e) := count(e) -f 1. 

(c) If count (e) = 1 and the twin of e is not yet known, then set % := i -J- 1 and afterwards reserve(e) := 2~x. 

(d) If count(e) = 1 and the twin of e is known, then let e' G E be the twin of e. If count(e') = 0, then set i := i + 1 and afterwards 

reserve(e) := 2~~l, else set reserve(e) := reserve(e ). 

(e) Jf count(e) > k and the twin of e is not yet known, then do: 

i. Set v" := succ(e). 

ü. Select an edge e"  G  E(v") with euler(e")  = 0.  If there is no such edge, then go to step 4(f) (comment: it holds that 

v" = succ(e)). 

iii. Traverse e   . 

iv. Set euler(e") := 1. 

v. Setz?" := succ(e"). 

vi. Go to step 4(e)ii. 

(f) If the twin of eis known, then let e' € E be the twin of e and do: 

i.   If count(e) -j- count(e') > kandcost(e) = 0, then set cost(e) := cost(e') := reserve(e). 

ii.   If count(e) + count(e') > k, then set cost(e) := co. 

(g) Set D := succ(e). 

5. Go to step 2. 

Alternatively, step 3 can be replaced by: 

3'   Consider all acyclic paths starting at v and ending at a vertex with an emanating edge whose VECA cost is zero. Select a path with niinimal VECA cost 
from these paths, using the heuristic-driven exploitation algorithm to break ties. 

Figure 4.5: The VECA Framework 

First alternative shows that Basic-VECA is consistent with respect to exploration in dynam- 
ically changing environments. The increase of the parameter's value and, consequently, of the 
worst-case guarantee is an inevitable price that one have to pay for arbitrary domain changes. 
Had the change taken part in an unexplored portion of the domain, for example, there would be 
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no need in the increase of VECA's parameter. 
If the agent is performing goal-directed exploration in a bi-directed domain and informed 

about all (visited) vertices with (new and old) unexplored emanating edges, the two main 
alternatives for VECA are as follows: 

• Increase the parameter of VECA by two, change all positive VECA costs, continue 
exploration according to VECA with parameter k + 2. 

• Consider a connecting component containing the current vertex. Build a Eulerian tour 
on the component starting (and finishing) at the current vertex. Assign positive VECA 
costs according to 0-VECA and the constructed Eulerian tour, continue exploration from 
the current vertex by VECA with parameter 0. 

If the agent is not informed about where new unexplored edges has been added to the domain, 
one can either re-start exploration from scratch or attempt to re-utilize already acquired map 
of the explored portion of the domain. In Chapter 5 we discuss the applications of VECA for 
the goal-directed exploration problems, when the map of the problem domain is provided in 
advance, but some vertices (edges) from the map can be blocked (untraversable) in the real 
domain. 

Theorem 4.1 and Theorem 4.2 stated the worst-case complexity of Basic-VECA and VECA 
in terms of the weight of the graph. It is possible to improve these worst-case guarantees 
through a simple trick: One considers a spanning tree of the explored portion of the domain, 
sets positive VECA costs and decides where to go next according to the spanning tree VECA 
costs. Since the weight of a spanning tree is 0(| V|), we can state the following corollary: 

Corollary 2 Spanning-Tree-Basic-VECA with even parameter k > 0, solves the goal-directed 
exploration problem for any undirected, unknown graph with the complexity of 0(1) x \V\ (to 
be precise: at most (k + 2) x \V\). 

Spanning-Tree-VECA, with even parameter k > 0, solves any bi-directed goal-directed 
exploration problem with a cost of0(1) x\V\ (to be precise: with a cost of at most (k+4) x \V\). 

Chapter D-star contains a detailed discussion on the spanning tree improvement of VECA. 

4.3   Implementation 

Since the VECA costs are exponentially decreasing and the precision of numbers on a computer 
is limited, Basic-VECA cannot be implemented exactly as described. Instead, we represent 
sequences of edges in candidate paths as lists that contain the current VECA costs of the edges 
in descending order. All paths of minimal VECA cost then have the smallest lexicographic 
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order. Since this relationship continues to hold if we replace the VECA costs of the edges with 
their exponent (for example, we use -3 if the VECA cost of an action is 1/8 = 2-3), we can 
now use small integers instead of exponentially decreasing real values, and steps 3 and 3' can 
be implemented efficiently using a simple modification of Dijkstra's algorithm in conjunction 
with priority lists. Table 4.1 presents the description of the modified Dijkstra's algorithm. 

procedure Modification of Dijkstra's Algorithm, G=(V,E) 
Algorithm starts at vcurrent: 

I. Initialize Single Source (G, vcurrent) 
£" o  \     ^current 

J. CJ i      V   \ Vcurreni 

4. Path-COStfUcurreni] <~ 0 

5. while Q ^ 0 
6. if (there exists a non-stack edge (v, w) such that v e S,w e Q) 
7. S<-S\Jw 
8. Q <r- Q \ w 
9. parentfw] <— v 
10. Path-cost[w] «- Path-costft?] 
II. else begin pop edge (x,y) from the stack 
12. while (it is not true that x e S,y £ Q) 
13. pop edge (x,y) from the stack 
14. s^s\jy 
15. Q <- Q \ y 
16. parent[y] <— x 
17. Path-cost[tü] <r- Path-weight[ü]   |J  {stack order((x,y))} 
18. restore stack without (x,y) 
19. end  

Table 4.1: Modification of Dijkstra's Algorithm for Path Costs. 

We gave two choices of step 3 to VECA to accommodate a wider variety of exploitation 
algorithms. For example, when implemented with AC-A*, VECA would use step 3 from 
Figure 4.2 and Figure 4.5 to search for the least expensive path from the current vertex to an 
untraversed edge. When implemented with LRTA* or Random Walk, VECA would use step 3' 
to find the cheapest path to an edge with zero VECA cost. These ways of integrating AC-A* 
and LRTA* with VECA are natural extensions of the stand-alone behavior of these algorithms. 
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4.4   Experimental Results 

We augment our theoretical worst-case analysis with an experimental average-case analysis, 
because the worst-case complexity of an algorithm often does not predict its empirical per- 
formance well. For the experiments, we use an implementation of the VECA framework that 
allows for easy selection of setups through a graphical user interface, Figure 4.6 shows a screen 
dump. 

M'?'jfi--:^.^^----}V 
M«w mtv* rm -MWMWHW- «N».imii .jw.|.i-a 

eneratinq Random Instances! •ating. M^^^^^M 

■UM 
1 

Current Domain:   Planar Mazes (change Domain)     pick Activity: | Exploration | Search 1 

Number of Rows  in  Maze: 64 KM 

Number of Columns in Maze: 64 l*M 

Start_state Row Number in Maze: 62      FM 

Start_state Column Number in Maze: 62      I^M 

Enter Random Seed: 12349876 |»M ( Heuristic Mix) 

Choose the Type of Heuristic:  Q  Manhattan Distance (Generate Heuristics) 

Enter Percentage of Walls to Remove: 41       1 ^^^1= 100 
      i i 

Or Just the Number of Walls to Remove: 32, Q»)  Out of Total: 3969 PF| 

Enter Random Seed for Walls Removal: 98761234 KM 

Specify Output File Name:   maze        Name Data File:   data  

Select Exploration Methods: 

Sf   OnNNA 

□ Basic-VECA UNWTD 

□ k-VECA NN-based 

□ k-VECA Rand.walk-based 

Sf  Deng-P^padimitriou Alg. 

□ DPA with short-cuts 

□ Basic-VECA WTD 

3-VECA edge removal: | Yes | No | Both [ 

Parameter k for VECA: K> M»| 

k-VECA edge removal: | Ves | No | Both | 

Search with lim.Complexity: | Ves | No] 

Select Search Methods: D   Random HeuroSearch     Q   RBF5     Sf   LRTA*    Sf   Robotic A* 

( Generate)        ( Explore) ( Read Data) ( Store Data") (Exit 

Figure 4.6: The Graphical User-Interface of the VECA System 

The task that we study here is finding a goal state in mazes. The mazes were constructed 
by first generating an acyclic maze of size 64 x 64 and then randomly removing 32 walls. The 
edge lengths correspond to the travel distances; the shortest distance between two junctions 
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counts as one unit. We randomly created five mazes with start location (62,62), goal location 
(0,0), a diameter between 900 and 1000 units, and a goal distance of the start state from 650 
to 750 units. For every goal-directed exploration algorithm tested, we performed 10 trials in 
each of the five mazes (with ties broken randomly). We measure their performance as the total 
travel distance (cost) from the start state to the goal state averaged over all experiments. 

Here, we report our experiments with two heuristic-driven exploitation algorithms, namely 
AC-A* and Learning Real-Time A* (LRTA*) [42] with lookahead one. These algorithms are 
integrated into the VECA framework as follows: AC-A* is used with step 3 of VECA. It breaks 
ties among action sequences according to their cost (see the definition of AC-A*). LRTA* is 
used with step 3' of VECA. It breaks ties according to how promising the last action of each 
action sequence is. These ways of integrating AC-A* and LRTA* with VECA are natural 
extensions of their stand-alone behavior. 

In our experiments, we vary both the value of VECA's parameter k and the available heuristic 
values. We noticed that the assignment of positive VECA costs after odd number of traversals 
improves the empirical performance of VECA in conjunction with LRTA* or AC-A*. Thus, 
unless VECA's parameter is zero, we assign a reserved positive cost to a pair of twin edges 
after it has been traversed k — 1 (odd) times. The flexibility of VECA allows one to exploit any 
search rules before the pair of edges is traversed k times, including assigning positive costs one 
step earlier. 

To create heuristic values hi (e) of different quality for edges e = (v,w) € E,we combine 
the goal distance h*(e) with the Manhattan distance mh(e) (the sum of the x and y distance 
from vertex v to the goal state) using a parameter t e [0,1] (t determines how misleading the 
heuristic values are; the smaller t, the lower their quality): 

hi(e) = t x (length(e) + h*(succe(v))) + (1 - t)(length(e) + mh{succe{v))) 

Figure 4.7, for instance, shows two example runs of AC-A* without VECA: The left figure 
shows which actions AC-A* explored for t = 1 until it reached the goal state. A thin fine means 
that an action has been executed at least once; a bold line means that both the action and its twin 
have been executed at least once. AC-A* moves the agent with minimal cost to the goal. If we 
increase the contribution of the Manhattan distance to the heuristic values, the total cost of the 
actions executed from the start state to the goal state increases. The right figure, for example, 
shows which actions AC-A* explored for t = 0. In our experiments, we also use heuristic 
values /12(e) that were derived by combining the goal distance with the Max(X, Y) heuristic 
(the maximum of the x and y distance from state s to the goal state), again using parameter t. 
Both h\(e) and /12(e) are consistent and thus admissible. 

Figure 4.8 shows the empirical performance of AC-A* with and without VECA. In the left 
diagram, the heuristic values h\{e) were used; the right diagram shows the same results for the 
heuristic values h2(e). 
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Figure 4.7: Exploration Behavior of AC-A* with Different Heuristics 
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Figure 4.8: Empirical Performance of AC-A* with and without VECA 

In both cases, the x axis shows our measure for the quality of the heuristic (100 times the 
value of t) and the y axis shows the average cost for one run. All graphs tend to decrease for 
increasing t, showing that the quality of the heuristic values increases, as expected. AC-A* 
without VECA is already efficient - it does not execute the same action a large number of 
times. Thus, VECA does not change the behavior of AC-A* if k is large - it turns out that 
the behavior of AC-A* with VECA for A; = 10 is already the same as the behavior of AC-A* 
without VECA. The graphs for k = 4 suggest that AC-A* with VECA now outperforms AC-A* 
without VECA. The abnormal behavior of AC-A* for the Max(X,Y) heuristic around t = 0.5 
can be explained as follows: Equal amounts of the goal distance and the Max(X,Y) heuristic 
produce many ties between different directions. AC-A* then does not follow one direction, but 
tends to alternate between them. 

Figure 4.9 shows the empirical performance of LRTA* with and without VECA. The 
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qualitative behavior is the same for h\(e) and h2(e). Again, the larger t is, the better is the 
quality of the heuristics, and all graphs are monotonically decreasing. Only for misleading 
heuristic values (small t) does LRTA* with VECA outperform LRTA* without VECA. This is 
so, because VECA forces LRTA* to explore the state space too much if the heuristic values 
are only moderately misleading. For the same reason, the LRTA* VECA combination with a 
small k outperforms this combination with a large k only if t is small. 

For heuristic values of "high" quality, all considered algorithms establish either optimal 
or near-optimal behavior. We noticed that LRTA* remains near-optimal the longest, until 
the contribution of the goal distance is at least 40%. However, when the heuristic became 
misleading, LRTA* established the worst performance among the above algorithms. The 
combination of VECA with LRTA* loses to LRTA* for a certain interval of values of t, the 
range of the interval depends also on the value of VECA's parameter k. For lower k (like 2 or 
4), VECA with LRTA* begins losing earlier to stand-alone LRTA*, but gains a win of several 
multitudes when heuristic values become pure Manhattan distance. VECA with higher values 
of parameter k deviates later from LRTA*, but the amount of win for misleading heuristics is 
significantly less. These facts provide an intuition to the dependency of the efficiency of VECA 
to the value of parameter k. 

LHTA* tor Manhattan Distance -•— 
LRTA* with VECA for k=4 and Manhattan Distance H— 

LRTA'wIth VECA for k=10and Manhattan Distance -a- 
LRTA" with VECA for k=20 and Manhattan Distance ~*~ \\ 
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Figure 4.9: Empirical Performance of LRTA* with and without VECA 

When comparing the behavior of AC-A* with that of LRTA*, we notice that AC-A* is more 
efficient. This is to be expected, since LRTA* deliberates much less between action executions 
- it has been designed for the case that action executions and deliberation are about equally 
fast, which is not the case here. Thus, VECA is able to improve the empirical performance of 
LRTA* more than that of AC-A* if the heuristic values are misleading. Also, AC-A* is more 
brittle than LRTA* towards variations in the quality of heuristic values, since AC-A* makes 
more global decisions about where to move in the state space and is thus much more affected 
by a wrong decision. 
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We also ran experiments with other goal-driven exploitation algorithms, such as biased 
random walks and an algorithm that moves the agent so that it expands the states in the same 
order as the A* algorithm does. The results are qualitatively similar, but more impressive: Since 
both of these goal-driven exploitation algorithms are inefficient to start with, VECA achieves a 
much larger improvement in the empirical performance if the heuristic values are misleading. 

We also performed experiments in different domains, because the performance of goal- 
directed exploration algorithms does not only depend on the heuristic values used, but also 
on the properties of a domain. The results show that the following factors have a significant 
influence on the performance of goal-directed exploration algorithms: the goal distance of 
the start state, the density of the state space, its connectivity, and a new feature that we 
call oblongness (the ratio of its diameter to the number of states). For example, goal-directed 
exploration algorithms exhibit similar performance for exploration problems whose oblongness 
and goal distances of the start state are similar. Our current work focusses on studying the 
influence of such domain properties on the efficiency of goal-directed exploration in more 
detail. 

4.5   Multiple Agents 

In this section we discuss the goal-directed exploration problem in multi-agent domains. The 
multi-agent exploration is a rich area by itself. It involves such fundamental issues as cooper- 
ation, information exchange and non-determinism among others. In this section we show that 
VECA can be applied to multi-agent scenarios as well. 

In general, hybrid approaches provide a fruitful arena for the multi-agent behavior. Several 
agents may follow different strategies simultaneously as long as they do not compete for 
resources. If the strategies were selected to cover different efficiency dimensions, such a setting 
may cover efficiently both "hard" and "easy" cases. In particular, regarding the goal-directed 
exploration problem, one of the agents ("cautious") may follow one of the strategies from 
CS theory that would provide strong performance guarantees. Second agent ("optimist") may 
try one of more risky AI strategies, third agent ("pragmatist") may choose VECA with one's 
favorite value of k, etc. 

Is this multi-agent setting too prudent? What if one considers the best possible scenario 
of having powerful "optimists" on the team, who would cooperate in their joint search for a 
goal in an unknown environment? AC-A* is one of those advanced "optimists" that exploits 
an efficient strategy even for a single-agent domain. Can it be the case that the team of an 
arbitrary many cooperating "optimists" would follow the AC-A* strategy and lose to a single 
"cautious" agent? Unfortunately, the answer is negative. Whatever number of "optimists" 
decide to cooperate completely and follow the AC-A* strategy, even if they do not compete 
for resources, i.e. they are allowed to be simultaneously at the same time at the same location 
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and can share edge traversals, there exists a domain in which a single "cautious" agent would 
outperform the whole "optimistic" team. 

One can come up with a modification of Figure 3.3 for the counter-example of the multi- 
agent exploration scenario. Number of branches of each size is multiplied by iV - the number of 
agents. An example of such graph is presented in Figure 4.10. The team of "optimists" would 
start at v0, travel along the stem x times, each time attempting to traverse N identical branches 
that share a common stem vertex u,-, until one of the agents discovers the goal at the end of one 
of the N longest branches. On the other hand, if the "cautious" agent that follows Chronological 
Backtracking or DFS, starts at the stem vertex attached to the goal stem, it will not traverse 
more than the weight of the graph before reaching the goal. Simple calculations show that each 
"optimist" would traverse xx less than a single agent in graph shown in Figure 3.3: 

_ xX+3 + xX+2 ~ 4x*+l + x + 1 
l&tigttl"optimistic" — } , \o 

{X — If 

The "cautious" agent would traverse the length of at most the weight of the graph: 

_ (3N + \)xx+2 - {AN + 2)xx+l -(N- l)xx + 2 
l€TlC[til"caufiousii — / 1 \2 

Thus, as soon as the graphs parameter x satisfies x > 3N + 1, the "cautious" agent would 
experience a sweet victory over the team of "optimists." This facts emphasizes the importance 
of considering worst-case scenarios, since the price that an "optimistic" team may pay, can be 
multiplied by the number of the agents, besides simply losing to a single agent in time. 

Fortunately, VECA provides a good solution to the multi-agent variant of the goal-directed 
exploration problem. VECA with low parameter k establishes strong performance guarantees 
for an arbitrary reversible domain. One of the agents may follow such VECA for a "backup." 
We also found that when VECA's parameter k is equal to 2 or 4, it outperforms all other known 
goal-directed exploration algorithms in sparse tree-like mazes. Such a "super-cautious" agent 
might be very helpful in "hard" search problems. 

This simple example shows the importance of the team diversification, as one may perceive 
life as a sequence of goal-directed exploration problems in a partially unknown world. 

4.6   Summary 

We introduced an application-independent framework for goal-directed exploration, called 
VECA, that addresses a variety of search problems in the same framework and provides good 
performance guarantees. VECA can accommodate a wide variety of exploitation strategies that 
use heuristic knowledge to guide the search towards a goal state. For example, in Chapter 5 
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Figure 4.10: A Bad Graph for the "Optimistic" Team 

we discuss the application of VECA to the sensor-based planning problem. VECA monitors 
whether the heuristic-driven exploitation algorithm appears to perform poorly on some part 
of the state space. If so, it forces the exploitation algorithm to explore the state space more. 
This combines the advantages of pure exploration approaches and heuristic-driven exploitation 
approaches: VECA is able to utilize heuristic knowledge and provides also a better performance 
guarantee than previously studied heuristic-driven exploitation algorithms (such as the AC-A* 
algorithm). VECA's worst-case performance is always linear in the weight of the state space. 

Thus, while misleading heuristic values do not help one to find a goal state faster, they 
cannot completely deteriorate its performance neither. A parameter of VECA determines when 
it starts to restrict the choices of the heuristic-driven exploitation algorithm. This allows one to 
trade-off stronger performance guarantees (in case the heuristic knowledge is misleading) and 
more freedom of the exploitation algorithm (in case the quality of the heuristic knowledge is 
good). In its most stringent form, VECA's worst-case performance is guaranteed to be as good 
as that of BETA, the best uninformed goal-directed exploration algorithm. Our experiments 
suggest that VECA's strong worst-case complexity does not greatly deteriorate the empirical 
performance of the combinations of previously studied heuristic-driven exploitation algorithms 
if they are used in conjunction with VECA. Furthermore, in many cases VECA even improved 
their performance. 
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Chapter 5 

Agent-Centered Approach for 
Sensor-Based Planning 

In this chapter, we analyze a navigation problem in which a robot has to navigate from a given 
start location to a given goal location in an unknown terrain. We model this navigation problem 
as finding a path from a start vertex to a goal vertex in an initially partially or completely 
unknown graph that represents the terrain. This path planning problem is complicated by 
the fact that the sensors on-board a robot can typically sense the environment only near its 
current position, and thus the robot has to interleave planning with moving to be able sense 
its environment. As the robot moves, it acquires more knowledge about the terrain and 
consequently reduces its uncertainty about the environment, which also reduces the number of 
contingent obstacle configurations that the planner has to consider. In the simplest setting we 
assume that the domain is static and robot's actions are deterministic. Even such a generate 
scenario prompts for further investigations concerning efficient strategies that would balance 
action execution and exploring the domain. Thus, sensing during plan execution and using the 
acquired knowledge for re-planning (often called "sensor-based planning") makes the planning 
problem tractable. 

The above sensor-based planning problem and the goal-directed exploration problem intro- 
duced in Chapter 3, are somewhat similar. Robot's sensor limit lookahead of the robot, one's 
knowledge about the environment is incomplete, one has to explore it sufficiently to reach the 
goal. However, in the sensor-based planning problem, one has an additional knowledge in a 
form of already provided map that imperfectly represents the problem domain. The presence 
of this knowledge promoted the hopes that the sensor-based planning problem is essentially 
easier than the goal-directed exploration problem. 

In this chapter we show that two problems are indeed close and accept variations of VECA 
as efficient solutions. Furthermore, we modify an example from Chapter 3 to demonstrate that a 
popular technique of planning with the freespace assumption is not optimal for the sensor-based 
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planning problem, although it provides strong empirical performance. Thus, the presence of 
the map seems not to facilitate agent's task. 

5.1 Sensor-Based Planning with the Freespace Assumption 

A popular technique for sensor-based planning is planning with the freespace assumption [17] 
[56] [73] [82]: The robot assumes that the terrain is clear unless it knows otherwise. It always 
plans a shortest path from its current location to the goal location. When it detects an obstacle 
that blocks its path, it replans a shortest path from its current location to the goal location using 
its knowledge about all obstacles encountered so far. It repeats this procedure until it reaches 
the goal location or realizes that reaching the goal is impossible. Planning with the freespace 
assumption has been used both on grids and visibility graphs. This approach allows to omit an 
expensive procedure of modeling all obstacles of the problem domain and introduce them in a 
simplified form upon sensing. 

In the literature, it has been conjectured that this sensor-based planning approach might be 
optimal[82], given the lack of initial knowledge about the environment. We show that this is 
not the case. In particular, we demonstrate that planning with the freespace assumption can 
make good performance guarantees on some restricted graph topologies (such as grids), but is 
not optimal in general. For situations in which its performance guarantee is not sufficient, we 
also describe an algorithm, called Basic-VECA, that exhibits good average-case performance 
and provides performance guarantees that are optimal up to a constant factor. 

5.2 Problem Description 

In this section, we formalize the navigation problem that we study and show how it has been 
used on actual robots. We state the sensor-based planning problem as follows: 

Sensor-Based Planning Problem: An agent is given an undirected, finite 
graph with positive edge lengths and vertices that are either blocked or unblocked 
(their status does not change over time). One unblocked vertex is labeled the 
starting vertex; one vertex is labeled the goal vertex. The agent can move from 
its current vertex to any unblocked neighboring vertex. Initially, it does not know 
the status of all vertices. However, it always senses the status of its neighboring 
vertices. The agent is started at the starting vertex and has to either move to the 
goal vertex, or recognize that this is impossible. 

This sensor-based planning problem can be pictured as follows: A robot is given a map 
and has to move from its current location to a given goal location.   Intersections can be 
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Figure 5.1: Outdoor robot navigation with NAVLAB II 

blocked by construction sites, but the robot does not have complete prior knowledge about 
which intersections are blocked. It can, however, observe the status of all its neighboring 
intersections. 

In the literature, the sensor-based planning problem has been studied in the context of 
actual robot navigation problems. One of the applications of sensor-based planning problems 
is an outdoor navigation problem that has been used to formalize the mission of NAVLAB II, 
Carnegie Mellon's robot HMMWV (high mobility multi-wheeled vehicle) [74]. 

Outdoor Navigation Problem: An unmanned ground vehicle has to reach 
specified coordinates in an unmapped static terrain. To do so, it discretizes the 
unknown area into a coarse-resolution map of square cells. Each cell is either 
traversable or untraversable. The vehicle always occupies exactly one cell and 
can move in all eight compass directions to traversable adjacent cells. Its sensor 
always detects which of its eight adjacent cells are traversable, and integrates all 
new information into the map.1 

This outdoor navigation problem is a special case of the sensor-based planning problem on 
regular 8-connected grids. For example, a vehicle that operates in the terrain of Figure 5.1 ini- 
tially has the knowledge shown in Figure 5.2. Figure 5.3 shows the corresponding traversability 
graph. 

Another application of sensor-based planning problems is an indoor navigation problem 
that has been implemented by [56]. 

^ABLAB II does not only distinguish between traversable and untraversable cells, but differentiates more 
fine-grained by assigning traversal costs to them. It takes a robot, for example, longer to traverse a stretch of 
uneven or muddy terrain than it takes it to traverse a stretch of paved road of the same length. Re-planning 
occurs whenever a new traversal cost is assigned to a cell. Our description is a special case of this approach that 
distinguishes only two traversal costs, one of which is infinite. This does not affect our conclusions, because a 
sensor-based planning algorithm that is inefficient for the special case is also inefficient in general. 
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Figure 5.4: Indoor robot navigation with a Nomad 

Indoor Navigation Problem: A Nomad-class mobile robot has to reach a 
goal position in an unknown static maze with walls. The robot can move in the 
four main compass directions to adjacent cells if no wall blocks its path. Its sonar 
sensors always detect the presence of walls adjacent to the robot, and integrate all 
new information into the map. 
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Figure 5.5: Initial graph (1) 
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Figure 5.6: Initial graph (2) 

This indoor navigation problem is a special case of the sensor-based planning problem on 
regular 4-connected grids with extra vertices. For example, Figure 5.5 shows the traversability 
graph that corresponds to the initial knowledge of a Nomad robot that operates in the maze 
of Figure 5.4. The extra vertices are necessary to convert the sensor-based planning problem 
from one where the edges are blocked or unblocked to one where the vertices are blocked or 
unblocked. 

As an example for how to model holonomic, but not omni-directional mobile robots with 
limited sensing direction, we consider a robot that can only sense the wall directly in front 
of it and solves the indoor navigation problem by repeatedly moving forward, turning left 90 
degrees, and turning right 90 degrees. Figure 5.6 shows the corresponding traversability graph. 
In this case, the edge lengths are not necessarily uniformly one (not shown in the figure), since 
turning and moving forward can take different amounts of time. 
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5.3   D* Algorithm 

In this section, we describe planning with the freespace assumption as a greedy way of solving 
sensor-based planning problems. Planning with the freespace assumption can be stated as 
follows: 

Planning with the Freespace Assumption: The robot always makes the 
optimistic assumption that vertices are unblocked if it does not know their status. It 
uses this assumption to plan a shortest traversable path (a path that does not contain 
vertices that are known to be blocked) from its current vertex to the goal vertex 
and traverses it until it learns about a blocked vertex on the path. At this point, it 
repeats the procedure, taking into account its knowledge about which vertices are 
blocked. If it reaches the goal vertex, it stops and reports success. If, at any point 
in time, it fails to find a traversable path from its current vertex to the goal vertex, 
it stops and reports that the goal vertex cannot be reached. 

The D* algorithm assumes that re-planning takes finite amount of time at any point in time. 
Since the re-planning step is based on finding a shorting path, the finite assumption is thus based 
on the finite size of the graph that models the problem domain, which is a common assumption. 
The most time-consuming step of planning with the freespace assumption is re-calculating a 
shortest path when new knowledge about obstacles has been acquired. The Dynamic A* (D*) 
algorithm [72] does this without unnecessary re-calculations. 

Theorem 5.1 Planning with the freespace assumption terminates infinite time and is correct. 

Proof: 

• Termination: Every time when the robot cannot follow a planned path, it has learned 
about at least one additional blocked vertex, and there are only a finite number of them, 
implying that planning with the freespace assumption terminates in finite time, provided 
that a re-planning method is used that is capable of re-planning in finite time. 

• Correctness: Planning with the freespace assumption reports success only if it is at the 
goal vertex and thus has solved the sensor-based planning problem. If reports failure 
only if there is at least one blocked vertex on every path from its current vertex to the 
goal vertex and thus no traversable path from its current vertex to the goal vertex exists. 
Since there is a traversable path from its current vertex to the starting vertex (the robot 
was able to reach its current vertex from the starting vertex and this path can be traversed 
in reverse since the graph is undirected), there is no traversable path from the starting 
vertex to the goal vertex either. Consequently, reaching the goal vertex is impossible.   ■ 
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Planning with the freespace assumption has been used on actual robots. For example, 
it has been applied to the outdoor [74] and the indoor [56] navigation problems described 
above. Planning with the freespace assumption has several advantages: It is easy to implement. 
Its computations can be done efficiently. It takes advantage of newly acquired knowledge 
immediately and always uses all of its knowledge. Without any changes to the algorithm, it is 
able to use prior knowledge about blocked vertices. It learns an optimal trajectory over multiple 
trials with the same starting and goal vertices, since the freespace assumption encourages the 
exploration of vertices with unknown status. It exhibits a reasonable goal-oriented behavior 
in practice. Finally, when it is used in conjunction with grids (as in the outdoor navigation 
problem), it does not need to make assumptions about the shapes of obstacles. 

5.4   Complexity Analysis 

We measure the performance of sensor-based planning algorithms by the distance that the 
robot has to travel before it reaches the goal vertex or discovers that this is impossible. Since 
the environment is not completely known initially, we cannot expect the robot to follow the 
omniscient best path. However, it is a common assumption in the literature that planning with 
the freespace assumption is optimal given the lack of initial knowledge (in other words, that no 
other uninformed sensor-based planning can do better) [82] [73] [56], although no analytical 
results to this effect have been reported. 

In the following section, we assume completely uninformed sensor-based planning algo- 
rithms. We provide lower bounds on the performance guarantee of planning with the freespace 
assumption (measured as the length of the robot's path until one reaches the goal or finds that the 
goal is unreachable) and show that, contrary to the existing belief, planning with the freespace 
assumption is not optimal, since there exists another uninformed sensor-based planning algo- 
rithm that provides a better performance guarantee. Section 5.4.2 contains upper bounds for 
the length of robot's path. (Further research involves closing the gap between the upper and 
the lower bounds.) In both sections, we need the following notation: weight(G) denotes the 
weight of graph G = (V, E) (the sum of all its edge lengths), and distG(vi, v2) denotes the 
length of a shortest path between v\ e V and v2 G V in G. 

5.4.1   Lower Bounds 

In this section, we use two examples to establish lower bounds on the performance guarantee of 
planning with the freespace assumption when it is completely uninformed. These lower bounds 
demonstrate that planning with the freespace assumption is not optimal, in the following way: 
Consider the following uninformed sensor-based planning algorithm. 
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Chronological Backtracking: The robot always selects an edge that leaves its 
current vertex and traverses it, according to the following restrictions: If possible, 
the robot traverses an edge that leads to an unblocked vertex and that it has not 
yet traversed. If there is no such edge, it instead traverses the edge in the opposite 
direction with which it entered its current vertex for the first time ("backtracking"). 
If the robot reaches the goal vertex, it stops and reports success. If, at any point in 
time, the robot is at the starting vertex and has already traversed all of the edges 
that leave the starting vertex and lead to unblocked vertices, it stops and reports 
that the goal vertex cannot be reached. 

Chronological backtracking solves any sensor-based planning problem with at most 
two traversals of every edge. Consequently, it provides a tight performance guarantee of 
©(weight(G)), and no uninformed sensor-based planning algorithm can do better in the worst 
case.2 The performance guarantee of planning with the freespace assumption has to be judged 
against this benchmark. We show that the performance guarantee of planning with the freespace 
assumption is superlinear in the weight of the graph (even for planar graphs) and thus worse 
than that of chronological backtracking. Hence it is not optimal. 

Our example is a planar graph, because maps are usually planar. It is a simple modification 
of a graph from Figure 3.33. 

The example is shown in Figure 5.7: The graph G\ = (Vi, Ex) consists of a stem with 
several branches that connect the goal vertex with the stem. All edge lengths are one. The stem 
has length nn for some integer n > 1 and consists of the vertices vo,vi,...,vnn, where v0 is the 
starting vertex. For each integer i with 1 < i < n there are nn~l branches of length 1 + E}=o nl 

each. These branches attach to the stem at the vertices vjAi for integers j; if i is even, then 
0 < j < nn_J - 1, otherwise 1 < j < nn~i. All vertices that are not directly connected to the 
goal vertex are unblocked, and so are the goal vertex and the vertex on the longest branch that 
is directly connected to the goal vertex. All other vertices are blocked. 

Planning with the freespace assumption can behave as follows if it has no initial knowledge: 
It starts at v0 and traverses along the whole stem, trying to use the branches of length 2 to 
get to the goal vertex only to discover that they are blocked. It then switches directions and 
travels along the whole stem in the opposite direction, this time trying to use the branches of 
length n + 2 to get to the goal vertex (to discover again that they are blocked), and so forth, 
switching directions repeatedly. It succeeds when it finally attempts to use the longest branch. 

2Chronological backtracking is often stated as follows: It always traverses untraversed edges that lead to 
unblocked and previously unvisited vertices, and backtracks if such edges do not exist. This improves the 
average-case performance, but does not change the performance guarantee. 

3 We have assumed that the robot is only able to sense the status of its neighboring vertices. The examples of 
this section can easily be adapted to sensors with larger lookaheads, say of x vertices, by replacing each edge with 
x consecutive edges that are connected via x — 1 unblocked intermediate vertices. 
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Figure 5.7: Graph G\ for n = 3 

To summarize, the edges connected to the goal vertex are tried out in the order indicated in 
Figure 5.7. 

To calculate the performance of planning with the freespace assumption for this behavior, 
we need the following relationships: First, the total travel distance is at least Q(nn+1), since the 
stem of length nn is traversed n times. Second, the weight of the graph is tight at weight(G\) = 
\Ei | = &{nn). Finally, n is at least ß(j^^j). Put together, it follows that the total travel 

distance is at least Q(nn+1) = Q(n x weight(Gi)) = Q(lo
1°1^i| x weight(Gi)). Since 

this is superlinear in weight(G\), the performance guarantee of planning with the freespace 
assumption is worse than that of chronological backtracking and thus not optimal. 

Perhaps, the graph constructed in Figure 5.7 looks very artificial. It was, indeed, a chal- 
lenging task to come up with an example of the domain where the planning with the freespace 
assumption algorithm establishes a superlinear behavior, because, in general, this algorithm 
is very efficient. However, we found that any graph of the type presented in Figure 5.8 is 
somewhat misleading for the planning with the freespace assumption algorithm. Dashed lines 
represent non-intersecting paths with at least one vertex blocked along the paths. As long as the 
sum of the length of the traversable path between vertices v and w and the goal distance from 
w is greater than the sum of the distance from the current vertex on the upper stem to a dashed 
path, the length of a dashed path and the distance from a connecting vertex of the dashed path 
on the lower stem to the goal vertex, the planning with the freespace assumption algorithm will 
try all dashed paths before traversing the (u, u>)-path. 
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Figure 5.8: A Tough Graph 

5.4.2   Upper Bounds 

In this section, we prove upper bounds on the performance guarantee of planning with the 
freespace assumption. We state a bound that holds for all graphs and show how this bound can 
be improved for some restricted graph topologies, such as grids, that have often been used in 
conjunction with the freespace assumption. We proceed in two steps: First, we prove properties 
of the multiple shortest path algorithm, and then we apply them to planning with the freespace 
assumption. 

The multiple shortest path algorithm is defined as follows: The algorithm is given an 
undirected, finite graph G — (V, E) with positive edge lengths and a sequence [w;]™=1 of 
different vertices Wi e V. When it is started at w0, it moves on a shortest path to wu then 
moves on a shortest path to w2, and so forth until it reaches wn and stops. Any path that can 
result from this behavior is called a ([Iü;]"=1 , G) path. 

We make use of the following properties of the multiple shortest path algorithm: 

Theorem 5.2 Any ([u>,-]?=1, G) path on any tree G = (V, E) contains any edge e e E at most 
min(2|Vi|,2|V2|) times, where G\ = (V1,E2) and G2 = (V2,E2) are the two disconnected 
graph components that are obtained from G by removing e. 

Proof: Without loss of generality, assume that |Vi| < \V2\. The multiple shortest path 
algorithm traverses e towards G\ only when it takes a shortest path from a vertex in G2 to a 
vertex Wi G V\ in G\. Since the graph is a tree, the traversals of e alternate directions. If 
wQ e Vy, then the edge is traversed at most |Vi| - 1 times towards G\ and |Vi| times towards 
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(?2. If wo € Vi, then the edge is traversed at most \V\ \ times towards G\ and | V\ \ times towards 
G2.   m 

Theorem 5.3 Let G\ = (V,Ei) and G2 = (V,E2) be any two graphs with distGl(v^v') < 
dista2(v,v') for all vertices v,v' £ V. Then, the length of any {[w^^Gi) path is at most as 
long as the length of the correspondent ([tUj]"=1, G2) path. 

Proof: Since dista^v^v') < distG2{v,v') for all vertices v,v' € V, the length of any 
shortest path in G\ from any vertex to a vertex tu,- is at most as long as the length of any shortest 
path in G2 between the same vertices.   ■ 

We now show how these properties of the multiple shortest path algorithm can be applied 
to planning with the freespace assumption: 

Consider the sequence [tu,-] £_ x of vertices where w0 is the starting vertex of planning with the 
freespace assumption, Wi for i = 2... n — 1 are the vertices at which it successfully re-plans 
paths, and wn is either the goal state or the state at which it realizes that reaching the goal 
state is impossible. The vertices to,- are pairwise different, since planning with the freespace 
assumption only re-plans paths at vertices at which it has never been before. This is the case 
because it only re-plans when it realizes that its current path is blocked and it would have 
known that the path was blocked had it been at that vertex before. Furthermore, it moves on 
shortest paths to vertices to», since it always plans shortest paths to the goal. (If the path to 
vertex tu,- were not optimal, neither would be the path to the goal.) Put together, it follows 
that planning with the freespace assumption on a graph G = (V, E) is a multiple shortest path 
algorithm on the graph that is obtained from G by removing all edges that border on at least 
one blocked vertex. For example, the performance guarantee of planning with the freespace 
assumption is no worse than \V\ weight(G) on any graph. This follows by summing the values 
of Theorem 5.2 over all edges, since min(2|Vi |, 2| V21) < |V|. 

Theorem 5.2 can also be used to prove better performance guarantees for restricted graph 
topologies. The graph shown in Figure 5.9 gives a general idea how one can apply Theorem 5.2 
to particular graphs. For example, the shown graph is a spanning tree of a square grid with 
edge lengths one that does not contain blocked vertices. Summing the values of Theorem 5.2 
over all edges results in a bound of 0(\V|3/2) = 0(\weight(G)\3/2) for this graph. A square 
grid with edge lengths one is supergraph of this graph and thus Theorem 5.3 applies: For each 
sequence [tuj]"=1 of vertices, the travel distance of planning with the freespace assumption on 
the grid is at most as large as that on the spanning tree. Thus, the maximum travel distance on 
the grid over all sequences [tu*]"=1 is at most as large as that on the spanning tree. It follows 
that the performance guarantee of planning with the freespace assumption on square grids with 
edge lengths one (or any supergraph of such grids) is 0(\weight(G)\3^2), and planning with 
the freespace assumption is optimal up to a factor of at most \weight(G)\ll2 on these graphs. 
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Figure 5.9: Subgraph of a square grid 

In general, to determine an upper bound on the performance of planning with the freespace 
assumption for a given graph topology, one first removes all edges from the graphs that border 
on at least one blocked vertex. Then, one selects a spanning tree of the resulting graph and 
sums the values of Theorem 5.2 over all edges of the tree. The resulting bound is also an upper 
bound for the given graph topology. We found that the diameter of the spanning tree plays an 
important role in deriving an upper bound through applications of Theorem 5.2. Among all 
spanning trees containing non-blocked vertices, ones with smaller diameters are usually more 
preferable. 

5.4.3   Applying VECA to Improve Performance Guarantees 

In this section, we re-apply Basic-VECA to a sensor-based planning problem and show that 
it exhibits good empirical performance and provides performance guarantees that are optimal 
up to a constant factor. We have shown that chronological backtracking can provide a better 
performance guarantee than planning with the freespace assumption. On the other hand, 
planning with the freespace assumption exhibits a much better average-case performance than 
chronological backtracking in typical domains, since chronological backtracking does not 
actively search for the goal vertex.4 Basic-VECA is an algorithmic framework that is capable 

Experimental results for planning with the freespace assumption are reported in [72]. Its average-case 
performance is very good, although recent experimental evidence [75] suggests that, at least in some domains, one 
can improve the total travel distance slightly by assuming that the status of a vertex is similar to the status of its 
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of accommodating both sensor-based planning algorithms. Its performance guarantee is better 
than that of planning with the freespace assumption, and its average-case performance is better 
than that of chronological backtracking (although it can be worse than that of planning with the 
freespace assumption). 

Basic-VECA with k — oo behaves identically to the goal-directed planning algorithms. On 
the other hand, Basic-VECA with k = 0 behaves identically to chronological backtracking. 
Values of k between these two extremes produce behaviors that mediate between the goal- 
directed planning algorithms and chronological backtracking. In all sensor-based planning 
problem domains, Basic-VECA guarantees that edges are traversed at most k + 2 times each 
and thus a total travel distance of at most (k + 2)weight(G). Hence, the performance guarantee 
is Q(weight(G)), independent of the value of A;. But there is a trade-off: The smaller the value 
of k, the better is the performance guarantee. A small value of k, however, also restricts the 
goal-directed planning algorithms earlier. This can force them to explore parts of the graph 
unnecessarily and increase the average-case performance. 

Figure 5.10 shows a version of Basic-VECA that uses planning with the freespace assump- 
tion as the goal-directed planning algorithm. In the actual implementation, we use priority 
lists instead of exponentially decreasing edge costs. Basic-VECA can be used even if no graph 
is available initially. If Basic-VECA is supplied with a graph, it can use this information to 
improve its performance. For a more detailed description of VECA and empirical results, see 
Chapter 4. 

Basic-VECA presented in Figure 5.10 guarantees the worst-case complexity of 
Q(weight(G)). For dense graphs with \E\ — Q(|V|) such a guarantee may not be satis- 
factory. There exists a way of improving the worst-case complexity of Basic-VECA for dense 
graphs, so that it can guarantee 0( | V |): one should keep track and consider costs only for edges 
of some spanning tree T of the explored portion of the problem domain. Step 3 of Basic-VECA 
would consider in this case only those paths leading from the current vertex to the goal vertex 
that can be split into two sub-paths, with the first path containing already visited vertices and 
edges of the spanning tree, and the second sub-path that goes exclusively through unvisited 
vertices. Figure 5.11 illustrates the spanning tree improvement of Basic-VECA. The agent 
is currently at vertex vc. The shortest path from vc to the goal goes through vertices x,w,y 
and z. However, according to the spanning tree modification, since vertex w has been already 
visited, Basic-VECA ignores two-edge sub-path vc,x,w and considers a sub-path to w that is 
routed through already constructed tree, i.e. that goes to w through vstart. After reaching w 
Basic-VECA traverses (w,y), includes (it>, y) in T, and then senses the status of vertex z in the 
attempt to traverse edge (y,z).Ifzis not blocked, Basic-VECA adds this edge to spanning tree 
T too, since it will be the first visit of vertex z. If Basic-VECA decides to go to the goal along 
the path vc, vstart, w, y, z, for the sake of efficiency, the agent may actually move to w through 

neighbors instead of assuming that it is unblocked. 
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Given a graph G = (V, E), Basic- VECA uses the following variables for all v, w € V withfv, w) € E: count (v, w) keeps track of how often the edge has 
been traversed from v to w, reserve(v,w) is the reserved VECA cost for its traversal from v to w, and cost(v, w) is the actual VECA cost for its traversal 
from v tote. 

Basic-VECA always makes the optimistic assumption that vertices are unblocked if it does not know their status. Consequently, we call apath traversable if it does not 
contain vertices that are known to be blocked. 

1. Set count (v, w) := cost(w,v) := Ofor all (v, w) € E. Set i := Oand s to the starting vertex. 

2. If s is the goal vertex, then stop and report success. 

3. If no traversable path from s to the goal vertex exists, stop and report that the goal vertex cannot be reached Otherwise, consider all traversable paths that 
start at $, end in an untraversed edge, and contain only traversed edges in between. (At least one such path exists. All these paths are guaranteed to contain 
only unblocked vertices.) Select apath with minimal actual VECA cost from these paths. Break ties by selecting the path with the smallest value, where 
the value of a path is the length of the shortest traversable path from s to the goal vertex that contains the path as prefix (at least one such path exists). 

4. Repeat the following steps until the selected path has been traversed: 

(a) tet(s,w) £ E be the next edge on the path. 

(b) Traverse the edge by moving to vertex w. 

(c) Set count(s, w) := count(s, w) -f 1. 

(d) If count(s, w) + count(w, s) = 1, then set i := i + 1 and afterwards reserve(s, w) := reserve(w, s) := 2~~l. 

(e) If count(s, w) + count(w, s) > k and cost(s, w) = 0, then set cost(s, w) :~ cost(w, s) := reserve(s,w). 

(f) If count(s, w) + count{w, s) > A:, then set cost(s, w) := oo. 

(g) Set s := w. 

5. Go to step 2. 

Figure 5.10: Basic-VECA 

vertex x. 
Theorem 4.1 guarantees that Basic-VECA with the spanning tree modification has the 

worst-case complexity of 0(weight(T)) = 0(\V\). Theorem 5.3 allows us to perform "short- 
cuts," i.e. to move robot actually along the shortest path to the last vertex of spanning tree T 
and then to the goal after the path has been chosen. In our example in Figure 5.11, it would 
correspond exactly to going to vertex x first, then - to w, and then - to y, instead of the estimated 
detour through vstart. The introduction of the spanning tree changes the process of reserving 
and assigning positive edge costs and thus effects the whole search process. 

5.5   Summary 

In this Chapter, we investigated goal-directed navigation in unknown environments. A common 
approach to solving this navigation problem is planning with the freespace assumption, where 
the robot always plans a shortest path to the goal, assuming that the terrain is clear unless it 
knows otherwise.  It had been conjectured in the literature that this planning approach was 
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Figure 5.11: Improving Worst-Case Complexity through a Spanning Tree 

optimal, given the lack of initial knowledge about the environment. Our results show that this is 
not the case: Its performance guarantee is not optimal. For situations in which its performance 
guarantee is not sufficient, we showed how Basic-VECA, a hybrid method based on techniques 
from AI and CS theory, can be applied to exhibit good empirical performance and provide 
performance guarantees that are optimal up to a constant factor. 
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Chapter 6 

GenSAT as Agent-Centered Search 

GenSAT is a family of local hill-climbing procedures for solving propositional satisfiability 
problems. In order to "re-utilize" knowledge accumulated about agent-centered search (see 
Chapters 3-4), we restate it as a navigational search process performed on an TV-dimensional 
cube by a fictitious agent with limited lookahead. Several members of the GenSAT family 
have been introduced whose efficiency varies from the best in average for randomly generated 
problems to a complete failure on some realistic, structured problems, hence raising the inter- 
esting question of understanding the essence of their different performances. In this paper, we 
show how we use our navigational interpretation to investigate this issue. We introduce new 
algorithms that sharply focus on specific combinations of properties of efficient GenSAT vari- 
ants, and which help to identify the relevance of the algorithm features to the efficiency of local 
search. In particular, we argue for the reasons of higher effectiveness of HS AT compared to the 
original GSAT We also derive fast approximating procedures based on variable weights that 
can provide good switching points for a mixed search policy. Our conclusions are validated by 
empirical evidence obtained from the application of several'GenSAT variants to random 3SAT 
problem instances and to simple navigational problems. 

6.1    GenSAT 

Recently an alphabetical mix of variants of GSAT [34, 64] has attracted a lot of attention from 
Artificial Intelligence (AI) researchers: TSAT, CSAT, DSAT, HS AT [27, 29], WSAT [66], 
WGSAT, UGSAT [18] just to name few. All these local Mil-climbing procedures are members 
of the GenSAT family. Propositional satisfiability (SAT) is the fundamental problem of the class 
of NP-hard problems, which is believed not to admit solutions that are always polynomial on 
the size of the problems. Many practical AI problems have been directly encoded or reduced to 
SAT. GenSAT (see Table 6.1) is a family of hill-chmbing procedures that are capable of finding 
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satisfiable assignments for some large-scale problems that cannot be attacked by conventional 
resolution-based methods. 

procedure GenSAT (Z) 
for i:=l to Max_Tries 

T:= initial(L) 
for j:=l to MaxJFlips 

if T satisfies X then return T 
else poss-flips := hill-climbCZ, T) 

; compute best local neighbors of T 
V := pick(poss-flips) ; pick a variable 
T := T with V's truth assignment inverted 

end 
end 

return "no satisfying assignment found" 

Table 6.1: The GenSAT Procedure. 

GSAT [34,64] is an instance of GenSAT in which initial (see Table 6.1) generates a random 
truth assignment, hill-climb returns all those variables whose flips1 give the greatest increase 
in the number of satisfied clauses and pick chooses one of these variables at random [27]. 
Previous work on the behavior of GSAT and similar hill-climbing procedures [27] identified 
two distinct search phases and suggested possible improvements for GenSAT variants. HSAT 
is a specific variant of GenSAT, which uses a queue to control the selection of variables to flip2. 
Several research efforts has attempted to analyze the dominance of HSAT compared with the 
original GSAT for randomly generated problem instances. We have developed a navigational 
search framework that mimics the behavior of GenSAT. This navigational approach allows us 
to re-analyze the reasons of higher effectiveness of HSAT and other hill-climbing procedures 
by relating it to the number of equally good choices. This navigational approach also suggests 
strong approximating SAT procedures that can be applied efficiently to practical problems. An 
approximation approach can be applied to both "easy" and "hard" practical problems, in the 
former case it will likely to produce a satisfiable assignment, whereas in the latter case it will 
quickly find an approximate solution. For a standard testbed of randomly generated 3SAT 
problems, the transition phase between "easy" and "hard" problem instances corresponds to 
the ratio value of 4.3 between the number of clauses L to the number of variables N [49, 11]. 

^ip is a change of the current value of a variable to the opposite value. 
2See Section 6.3 for the definition of HSAT. 
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Figure 6.1: The transition phase for random 3SAT problems. 

Figure 6.1 demonstrates the probability of generating a satisfying assignment for random 3S AT 
problems depending on the L/N-ratio. 

An approximate solution can be utilized in problems with time-critical or dynamically 
changing domains. Interestingly, we found that it also provides a good starting point for a 
different search policy, i.e. serves as a switching point between distinct search policies within 
the same procedure. Such an approach can be utilized beneficially in multi-processor/multi- 
agent problem settings. 

Our experiments with randomly generated 3 SAT problem instances and realistic naviga- 
tional problems confirmed the results of our analysis. 

6.2   GenSAT as Agent-Centered Search 

State spaces for boolean satisfiability problems can be represented as Af-dimensional cubes, 
where TV is the number of variables. We view GSAT and similar hill-chmbing procedures as 
performing search on these high-dimensional cubes by moving a fictitious agent with limited 
lookahead. For efficiency reasons, the majority of GS AT-like procedures limit the lookahead of 
the agent to the neighbors of its current state, i.e., to those vertices of the cube that are one step 
far from the current vertex. An edge of the cube that finks two neighboring vertices within the 
same face of the cube, corresponds to the flip of a variable. Thus, we reduced the behavior of 
GSAT to agent-centered search on a high-dimensional cube. Recall, in agent-centered search 
the search space is explored incrementally by an agent with limited lookahead. Throughout the 
paper we refer to this navigational version of GenSAT as to NavGSAT. 

The worst-case complexity of both informed and uninformed agent-centered search is 
of the order of the number of vertices, i.e. 0(2N). Moreover, unlike classical AI search 
where A* is an optimal informed algorithm for an arbitrary admissible heuristic, there are 
no optimal algorithms for agent-centered search problems[71].   Furthermore, as we have 



94 CHAPTER 6.  GENSAT AS AGENT-CENTERED SEARCH 

shown in Chapter 3, even a consistent, admissible heuristic can become misleading, and an 
efficient informed agent-centered search algorithm can demonstrate worse performance than 
the uninformed (zero heuristic) version of the same algorithm [39]. 

From the algorithmic point of view, the behavior of LRTA* [42], one of the most efficient 
agent-centered search methods, is close to NavGSAT's behavior. Both methods look for the 
most promising vertex among neighbors of the current vertex. In addition to selecting a neighbor 
with the best heuristic value, LRTA* also updates the heuristic value of the current vertex (see 
Table 3.3). The efficiency of LRTA* is known to depend on how closely the heuristic function 
represents the real distance [71]. The vast majority of GSAT-like procedures use the number 
of unsatisfied (or satisfied) clauses as the guiding heuristic. In general, this heuristic is neither 
monotone, nor admissible. However, for the most intricate random instances of SAT problems 
with L — O(N), this heuristic is an O(N) approximation of the real distance, e-search has 
been introduced in [35] as a modification of LRTA* [42] that can utilize the guidance of non- 
admissible, non-monotone prior knowledge and still guarantee convergence to a solution that 
would be a certain approximate of the optimal solution. The convergence requirement is that 
given heuristic values are at most 1 + e times the goal distance for some e > 0, i.e. 

h(v) < (1 + e)h*(v)   for  all v £ V 

Table 6.2 presents the description of the e-search modification of LRTA*. Thus, e-search 
[35] applies to SAT problems. 

procedure e-search (V, E) 
Initially, F(v) := h(v) for all v <E V. 
e-search starts at vertex vstart: 

1. v :— the current vertex. 
2. If v € Goal, then STOP successfully. 
3. e := argmineF'(neighbor(v,e)). 
4. F(v) := max(F(v),l + F (neighbor (v,e))). 
5. Traverse edge e, update v := neighbor(v, e). 
6. Go to 2. 

Table 6.2: e-Search Modification of LRTA*. 

The description of e-search may represent LRTA* as well, because the only difference 
between those two methods is step 4. Since LRTA* deals with monotone heuristics, for which 
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h(v) < l + h(neighbor(v, e)) holds for all vertices v £ V and adjacent edges e € E, the current 
heuristic value F(v) is at most the estimate for any of its neighbors - 1 + F(neighbor(v, e))). 
Lemma 4 A/iter repeated problem-solving trials of a soluble propositional satisfiability problem 
with N variables and 0(N) clauses, the length of the solution of (.-search converges to 0{N2). 

Proof: After repeated problem-solving trials the length of a solution of e-search converges 
to the length of the optimal path multiplied by (1 + e) [35]. On one hand, the length of the 
optimal path for a soluble propositional satisfiability problem is 0(N). On the other hand, for 
problems with L = O(N) approximating factor e is also 0(N). These two facts imply 0(N2) 
complexity of the final solution after an unknown number of repeated trials. ■ 

Even though the length of a solution of e-search converges to 0(N2) for satisfiable problem 
instances, several initial trials can have exponential length. Thus, this approach can be applied 
only in special circumstances: One is provided possibly exponential memory and possibly ex- 
ponential time for pre-processing to re-balance the heuristic values, after that the complexity of 
solving of the pre-processed problem is 0(N2). Unfortunately, the effort spent on preprocess- 
ing and knowledge acquired about a particular problem instance seems not to be automatically 
transferred to other problem instances. Since such an "exponential" pre-processing scenario 
is not always what AI researchers keep in mind when applying GenSAT, we do not consider 
e-search as a general navigational equivalent of GenSAT. However, in Section 6.3 we show 
that one (first) run of e-search coincides completely with the run of HSAT for the majority of 
soluble SAT problem instances. 

The approach of possibly "exponential" pre-processing is not completely hopeless, one 
can try to reduce the problem by considering smaller number of variables (projection on the 
correspondent face of the cube), acquire knowledge about the projected problem, and then to 
expand this knowledge (lifting from the face on the whole cube) to the original problem instance. 
This can be a promising direction for a series of problems that share common sub-structures. 

Thus, the question of the efficiency of GSAT and similar procedures is reduced to the 
domain-heuristics relations that guide agent-centered search on an iV-dimensional cube. Recent 
works on changing the usual static heuristic - the number of unsatisfied (satisfied) clauses - to the 
dynamic weighted sums [18] produced another promising sub-family of GenSAT procedures. 
Our experiments showed that the "quality" of the usual heuristic varies greatly in different 
regions of the iV-dimensional cube, and as the ratio of L to N grows, this heuristic becomes 
misleading in some regions of the problem's domain. These experiments identified the need to 
introduce novel heuristics and better analysis of the existing ones. 

6.3   New Corners or Branching Factor? 
We conducted a series of experiments with the e-search version of LRTA* and the number 
of unsatisfied clauses as the heuristic values for each vertex (corner) of the iV-dimensional 
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cube. We found that the combination of a highly connected TV-dimensional cube and such prior 
knowledge forces an agent to avoid vertices with updated (increased in step 4 of Table 6.2) 
heuristic values. Exactly the same effect has been achieved by HSAT, a variant of GenSAT, for 
randomly generated 3SAT problems with a low ratio of the number of clauses to the number 
of variables. In HSAT flipped variables form a queue, and this queue is used in pick (see 
Table 6.1) to break ties in favor of variables flipped earlier until the satisfying assignment is 
found or the amount of flips has reached the pre-set limit of Max-Flips. Thus, we consider 
e-search as a navigational analogue of HSAT for soluble problem instances. 

Previous research identified two phases of GenSAT procedures: steady hill-climbing and 
plateau phases [27]. During the plateau phase these procedures perform series of sideway flips 
keeping the number of satisfied clauses on the same level. The reduction of the number of 
such flips, i.e. cutting down the length of the plateau, has been identified as the main concern 
of GenSAT procedures. Due to high connectivity of the problem domain and the abundance 
of equally good choices during the plateau phase, neither HSAT nor e-search re-visit already 
explored vertices (corners) of the cube for large-scale problems. This property of HSAT has 
been stated as the reason of its performance advantage for randomly generated problems in 
comparison with GSAT [29]. 

To re-evaluate the importance of visiting new corners of the iV-dimensional cube, we 
introduced another hill-climbing procedure that differs from GSAT only in keeping track of all 
visited vertices and Never Re-visiting them again, NRGSAT. On all randomly generated 3SAT 
problems, NRGSAT's performance in terms of flips was identical to GSAT's one. Practically, 
NRGSAT ran much slower, because it needs to maintain a fist of visited vertices and check 
it before every flip. Based on this experiment, we were able to conclude that exploring new 
corners of the cube is not that important. This increased our interest in studying further reasons 
for the performance advantage of HSAT over GSAT. 

We focused our attention on poss-flips - the number of equally good flips between which 
GSAT randomly picks [28], or, alternatively, the branching factor of GSAT search during 
the plateau phase. We noticed that on earlier stages of the plateau phase both GSAT and 
NRGSAT tend to increase poss-flips, whereas HSAT randomly oscillates poss-flips around a 
certain (lower) level. To confirm the importance of poss-flips, we introduced variable weights3 

as a second heuristic to break ties during the plateau phase of NavGSAT. NavGSAT monitors 
the number of flips performed for each variable and among all equally good flips in terms of the 
number of unsatisfied clauses, NavGSAT picks a variable that has been flipped the least number 
of times. In case of second-order ties, they can be broken either randomly, fair - NavRGSAT, 
or deterministically, unfair, according to a fixed order - NavFGSAT. 

Both NavRGSAT and NavFGS AT allow to flip back the just flipped variable. Moreover, 

3 Weight of each variable is the number of times this variable has been flipped from the beginning of the search 
procedure. Each flip of a variable increases its weight by one. 
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Problem Algorithm Mean Median St.Dev. 
100 GSAT 12,869 5326 9515 

vars, HSAT 2631 1273 1175 
430 NavFGSAT 3558 2021 1183 

clauses NavRGSAT 3077 1743 1219 
1000 GSAT 4569 2847 1863 
vars, HSAT 1602 1387 334 
3000 NavFGSAT 1475 1219 619 

clauses NavRGSAT 1649 1362 675 
1000 GSAT 7562 4026 3515 
vars, HSAT 3750 2573 1042 
3650 NavFGSAT 3928 2908 1183 

clauses NavRGSAT 4103 3061 1376 

Table 6.3: Comparison of number of flips for GSAT, HSAT, NavRGSAT and NavFGSAT. 

the latter procedure often forces to do so due to the fixed order of variables. However, 
the performance of both NavRGSAT and NavFGSAT is very close to HSAT's performance. 
Table 6.3 presents median, mean and standard deviation of GSAT, NRGSAT, HSAT, NavRGSAT 
and NavFGSAT for randomly generated 3 SAT problems with 100 and 1000 variables and 
different ratios L to N. We investigated problems of this big size, because they represents 
the threshold between satisfiability problems that accept solutions by conventional resolution 
methods, for example Davis-Putnam procedure, and ones that can be solved by GenSAT hill- 
climbing procedures. 

In the beginning of the plateau phase both NavGSAT methods behave similarly to HSAT: 
Variables flipped earlier are considered last when NavGS AT is looking for the next variable to 
flip. As more variables gain weight, NavGSAT methods' behavior deviates from HSAT. Both 
methods can be perceived as an approximation of HSAT. 

We identified that a larger number of poss-flips is the main reason why GSAT loses to HSAT 
and NavGSAT on earlier stages of the plateau phase. As the number of unsatisfied clauses 
degrades, there are less choices for equally good flips for GSAT, and the increase of poss- 
flips is less visible. However, during earlier sideway flips GSAT picks equally good variables 
randomly, this type of selection leads to the vertices of the cube with bigger poss-flips, where 
GSAT tends to be "cornered" for a while. Figure 6.2 presents average amounts of poss-flips with 
the 95%-confidence intervals. The poss-flips were summed up for each out of four mil-climbing 
procedures for every step in the beginning of the plateau phases (from 0.25N to N) for a range 
of problem sizes. Since the number of variables and the interval of measuring grow linearly 
on N, we present sums of poss-flips scaled down by N2. As it follows from Figure 6.2, the 
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Figure 6.2: Comparison of Poss-Flips for GSAT, HS AT, NavRGSAT and NavFGSAT. 

original GSAT consistently outnumbers all other three procedures during that phase, although 
its confidence intervals overlap with NavRGSAT and NavFGSAT's confidence intervals. 

Figure 6.3 presents the dynamics of poss-flips during a typical run of GSAT. It is easy to 
see that on early plateaux poss-flips tend to grow with some random noise, for example, in 
Figure 6.3 second, third and fifth plateaux produced obvious growth of poss-flips until drops 
corresponding to the improvement of the heuristic values and, thus, the end of the plateau. 
During the first and fourth plateaux, the growth is not steady though still visible. Even though 
flips back are prohibited for NRGSAT, it maintains the same property, because of the high 
connectivity of the problem domain and the abundance of equally good choices. 

Figure 6.4 represents the average percentage of ties for a 3SAT problem with 100 variables 
and 430 clauses over 100 runs for GSAT and HSAT, and for GSAT and NavRGSAT. The 
average number of poss-flips for GSAT dominates the analogous characteristic for HSAT by 
a noticeable amount. This type of dominance is similar in the comparison of GSAT with 
NavRGSAT in the beginning of the plateau phase. In the second part of the plateau phase the 
number of poss-flips for HSAT or NavRGSAT approaches the number of poss-flips for GSAT. 
Lower graph represents second-order ties for NavRGSAT that form a subset of poss-flips. 
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Figure 6.3: Dynamics of Poss-Flips for GSAT. 

Our experiments confirmed the result obtained in [27] that the whole picture scales up 
almost linearly in the number of variables and the number of poss-flips, although we noticed 
a tendency of earlier beginning of the plateau phase as the number of variables grew from 
several hundred to several thousand. In our experiments, the plateau phase began after about 
0.2N — Q.25N steps. By that moment at most a quarter of the variable set has been flipped, 
and thus NavFGSAT mimics HSAT up to a certain degree. After 2N or 3iV flips, both versions 
of NavGSAT diverge significantly from HSAT. After these many steps both NavRGSAT and 
NavFGSAT still maintain random oscillation of poss-flips, whereas GSAT tends to promote 
higher levels of poss-flips. Unfortunately, for problems with larger ratio of the number of 
clauses to the number of variables NavFGSAT is often trapped in an infinite loop. NavRGSAT 
also may behave inefficiently for such problems: From time to time the policy of NavRGSAT 
forces it to flip the same variable with a low weight several times in a row to gain the same 
weight as other variables from the set of poss-flips. 

Thus, NavGS AT showed that the number of poss-flips plays an important role in improv- 
ing the efficiency of GenSAT procedures. HSAT capitalizes on this property and therefore 
constitutes one of the most efficient hill-climbing procedures for random problem instances. 
However, many real-world satisfiability problems are highly structured and, if applied, HSAT 
may easily fail due to its queuing policy. NavGS AT suggests another sub-family of GenSAT 
hill-climbing procedures that does not tend to increase the number of poss-flips. Weights of 
variables and their combinations can be used as a second tie-breaking heuristic to maintain 
lower level of poss-flips and find exact or deliver approximate solutions for those problems for 
which HSAT fails to solve. 

For randomly generated 3SAT problems HSAT proved to be one of the most efficient 
hill-climbing procedures. There have been reports on HSAT's failures in solving non-random 
propositional satisfiability problems [29]. We view the non-flexibility of HSAT's queue heuristic 
as a possible obstacle in solving over-constrained problems. This does not happen in solving 
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Figure 6.4: Percentage of Poss-Flips for GSAT with HS AT and GSAT with NavRGSAT. 

random 3SAT problems with low L/N-ratio. 

6.4   Approximate Satisfaction 
While running experiments with GSAT, HSAT and other hill-climbing procedures, we noticed 
that GSAT experiences biggest loss in the performance in the beginning of the plateau phase 
where the amount of poss-flips can be as high as 20-25%. On the other hand, HSAT, NavFGSAT 
and NavRGSAT behave equally good during the hill-chmbing phase and the beginning of the 
plateau phase. We thus concluded that any of the latter three procedures can be applied to provide 
fast approximate solutions. For some problems, versions of NavGSAT are not as efficient as 
HSAT. Nonetheless, we introduced NavFGSAT and NavRGSAT to show that HSAT's queuing 
policy is not the unique way of improving the efficiency of solving propositional satisfiability 
problems. 

Approximate solutions can be utilized in time-critical problems where the quality of the 
solution discounts the time spent for solving the problem. NavGSAT can be also applied to 
problems with dynamically changing domains, when the domain changes can influence the 
decision making process. Finally, approximate solution provide an excellent starting point for 
a different search policy. For example, WGSAT and UGSAT [18] utilized a promising idea 
of the instant heuristic update based on the weight of unsatisfied clauses. An approximate 
solution provided by HSAT or NavGSAT constitutes an excellent starting point for WGSAT, 
UGSAT or another effective search procedure of a satisfiable solution, for example, e-search 
(with heuristic updates). Among others we outline the following benefits of employing HSAT 
or NavGSAT to deliver a good starting point for another search method: 

• Perfect initial assignment with a low number of unsatisfied clauses. 

• Absence of hill-chmbing phase that, for example, eliminates noise in tracking clause 
weights. 
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• Efficient search in both steps of policy-switching approach. 

• Convenient point in time to fork search in multi-agent/multi-processor problem scenarios. 

Although HS AT, itself, is an efficient hill-cümbing procedure for randomly generated problems 
with a low clause-variable ratio, we expect that HSAT might experience difficulties in more 
constrained problems. NavGSAT provides another heuristic that guides efficiently in the initial 
phases. On the other hand, the hill-climbing phase may either produce noise in the clause 
weight bookkeeping or a redundant fist of vertices with updated heuristics that slows down the 
performance of e-search. Search with policy switching can benefit significantly from employing 
efficient procedures in all of its phases. 

6.5   Navigational Planning Problems 

To confirm the results of our navigational approach to GS AT, we applied all the discussed above 
hill-climbing procedures to the following simple navigational problem: 

Navigational Problem (NavP): An agent is given a task to find the shortest path 
that reaches a goal vertex from a starting vertex in an "obstacle-free" rectangular 
grid. 

NavP is a simplistic planning problem. It can be represented as a propositional satisfiability 
problem with N = \S\* D variables, where S is the set of vertices in the rectangular grid and 
D is the shortest distance between starting vertex X and goal vertex G. In a correct solution, 
a variable xd

s is assigned True (xd
a = 1), if s is <fth vertex on the shortest path from X to G, 

and False otherwise. There can be only one variable with the True value among variables 
representing grid vertices that are of-far from starting vertex X. This requirement implies 
L\ = ®(\S\2 * D) pigeonhole-like constraints: 

A1 A (-Vsi v -vf2) 
d=\ s\^S2 

Already these constraints make the domain look "over-constrained," since the ratio of L\ to iV 
is not asymptotically bounded. Another group of constraints has to force True-valued variables 
to form a continuous path. There can be different ways of presenting such constraints, we chose 
the easiest and the most natural presentation that does not produce extra variables: 

Ä V (v? A (v?-1 v v?-1 v v?-1 v v?-1)) 
d=2 ses 
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Vertices si,s2, s3, s4 e S are the neighbors of vertex s e S in the rectangular grid. To reduce 
the number of variables and clauses, the initial and the goal states are represented by stand-alone 
single clauses: 

Vertices s5, s6, s7, s$ e S are the neighbors of the starting vertex, s9, sw, sn, sn £ S are the 
neighbors of the goal vertex. 

Second group of constraints is not presented in the classical CNF form. It is possible 
to reduce it to 3SAT, but such a reduction will introduce a lot of new variables and clauses 
and will significantly slow down the performance without facilitating search for a satisfiable 
assignment. From the point of view of hill-cMmbing procedures that track clause weights, this 
would mean only a different initial weight assignment and a linear change in counting clause 
weights. Therefore, we decided to stay with the original non-3SAT model and considered each 
complex conjunction \JaeS(V8

d A (Vf'1 V V^-1 V V?'1 V V^1)) as a single clause. Together 
with the starting and goal vertex constraints, the second group contains L2 = 0(D) constraints 
that force True-valued variables to form a continuous path. 

It is fairly easy to come up with an initial solution, so that all but one constraint are satisfied. 
Figure 6.5 shows one of such solutions that alternates between the goal vertex and one of 
its neighbors, and the final path that satisfies all the constraints. The original GSAT has the 
complexity that is exponential on D. It performs poorly for such domains, because at every 
step it has more equally good chances than any other algorithm. HSAT was able to solve "toy" 
problems with less than 200 variables until its search was under the influence of initial states. 
For larger problems, after an initial search HSAT used to switch to a systematic search that 
avoided changing recently changed vertices. Since HSAT re-started search from both starting 
and goal vertices on a regular basis, all the variable corresponding to their neighboring vertices 
has frequently changed their values. Therefore, paths from the opposite direction attempted to 
avoid changing these variables again. This was one of the domain where the queuing policy of 
HSAT played against it. 

A slightly modified versions of NavFGS AT and NavRGS AT were capable of solving larger 
problems using Top-Down Depth-First-Search (TDDFS). TDDFS traverses repeatedly the 
search tree (the set of vertices reachable in D steps) from the root down, each time attempting 
to visit the least visited vertex from the current vertex or, if possible, unvisited vertex. The only 
modification of this behavior was that NavGSAT methods alternated roots between the starting 
vertex and the goal vertex while performing such search. 
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Figure 6.5: Initial and final solutions for NavP. 

6.6    GenSAT Conclusions 

We showed that GenSAT hill-climbing procedures for solving prepositional satisfiability prob- 
lems can be interpreted as navigational, agent-centered search on a high-dimensional cube, 
NavGSAT. This type of search heavily depends on how well heuristic values represent the 
actual distance towards the set of goal states. HS AT, one of the most efficient GSAT-Mke 
procedures, maintains low level of poss-flips. We identified this property as the main benefit of 
HS AT in comparison with the original GS AT. However, the non-flexibility of HS AT's queuing 
policy can be an obstacle in solving more constrained problems. We introduced two versions 
of NavGSAT that also maintain low level of poss-flips and can be applied as approximating 
procedures for time-critical or dynamically changing problems, or serve as a starting phase in 
search procedures with switching search policies. 
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Chapter 7 

Further Insights into On-Line Search 
Complexity 

In this chapter we discuss a few issues of on-line search that follow directly from the thesis 
work. A full investigation of these issues constitutes an interesting direction for future work. 
In particular, in this chapter we argue how some of the domain features may influence the 
complexity of on-line search. In a certain sense this discussion is also relevant to a much wider 
spectrum of problems. For example, as we noticed in Chapter 2, precise knowledge of the tight 
upper bound does not always provide an enlightening hint on constructing an optimal solution 
for combinatorial optimization problems. Similarly, if one is informed about the existence of a 
plan of a certain length, for some planning problems it is easy to come up with a feasible plan 
of this length, whereas for other problems this type of information would not help much. 

Thus, we would like to estimate the complexity of building feasible plans in deterministic 
planning problems too, as some incremental forward or backward-chaining planners that repair 
plans by backtracking and branching, can be perceived as search controlling mechanisms that 
move a fictitious agent through a set of feasible plans. 

What makes some domains harder to search than others? What are the relevant domain 
features that make search so hard? Are there any relations between identifying the complexity 
of search and other methods from different scientific areas? Of course, we are not going to 
provide full answers to all of these questions. In this chapter we attempt to answer only some 
of the above question, especially those relevant to on-line search and constructing optimal 
solutions for combinatorial optimization problems. 

There exist an additional interest to this topic, as there have been already several successful 
efforts in solving classical situated off-line search problems by on-line agent-centered search 
methods. Recall that in agent-centered search agent's lookahead is limited by a neighborhood 
of its current location. Among others, such problems include 5x5-puzzle solved by Korf's 
LRTA* [43] and 3SAT satisfiability problems, with the success in solving which attributed 
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recently to the family of hill-climbing procedures (see Section 6). These "stories of success" 
have much in common: 

• Agent-centered search achieves a reasonable balance between exploration (considering 
valid plans) and exploitation (selecting and executing sub-plans, acquiring knowledge, 
and resolving uncertainties). 

• Problem domains are well-connected, the cost of recovery from making a wrong decision 
is low. 

Given an admissible, monotone heuristic and unlimited resources, A* search algorithm 
cannot be outperform by any other algorithm [57]. And, indeed, agent-centered search methods 
appear to be less efficient than search-in-memory for many modestly sized problems. The 
benefit of A* algorithm is that it "teleports" its fictitious agent from one location to another for 
free. 

As we emphasized before, unlike the classical approach of situated search-in-memory, in 
agent-centered search the sequence of executed actions induce a continuous path on the problem 
domain. Such a difference impose a necessary change of the goal function. Usually the length 
of this path is viewed as the prime efficiency characteristic, since often the deliberation time is 
negligible in comparison with time needed to move the agent along the path. 

All successful agent-centered search replacements of situated search-in-memory seem to 
share two common features: Problem domains have relatively small diameters, but are too 
big for attacking by A*. Therefore, in our research we included the diameter of the problem 
domain in the fist of relevant features. It appears that the diameter, indeed, has an impact on 
the complexity of on-line search in reversible domains. 

7.1    The Oblongness Factor 

In off-fine search "teleporting" is allowed for a fictitious agent. Problems of this kind accept 
a greedy approach in exploring promising locations. Exploiting this strategy A* algorithm 
guarantees at most the same number of explored states in the worst case as any other search 
algorithm for the same domain and the same admissible heuristic function [57]. In this sense, 
search-in-memory is a homogeneous search environment with a domain-independent search 
tool. Furthermore, given a set of admissible heuristic functions, one achieves better efficiency 
by selecting majorizing heuristic values. 

In Chapter 3 we showed that heuristic values provide a slightly different type of guidance 
for agent-centered search. For example, for some problems an agent would achieve better 
efficiency with zero heuristic values than with a monotone, admissible heuristic that may be 



7.1.  THE OBLONGNESS FACTOR 107 

more misleading.  Thus, the principle of selecting majorizing heuristics does not extend to 
agent-centered search. 

We would like to find a simple way of estimating the complexity of on-line search problems 
that would tell us about the chances for agent-centered search to succeed in solving these prob- 
lems. The empirical evidence obtained from the experiments for the goal-directed exploration 
problem suggested that the size of the problem domain, its diameter and the distance from 
the starting state to the goal can affect the efficiency of search. Moreover, we found that for 
the goal-directed problems with the goal distance from the starting state being of the order of 
the diameter of the problem domain, the following feature that we call oblongness, seems to 
capture the complexity of agent-centered search. The choice of this feature was not accidental. 
There have been plenty of on-line search techniques of completely different natures, whose 
worst-case complexity on undirected graphs is proportional to the product of the size of the 
graph (number of vertices) and the diameter of the graph. The list of such algorithms include 
Smell-Oriented Search [80], discounted and undiscounted zero-initialized Q-learning [37] and 
edge counting [38], in next section we consider random walks, the expected complexity of 
visiting all vertices for which approximates the same product. Since both the diameter and the 
size of the graph grow linearly on the number of vertices, to make the complexity parameter 
scalable, we introduce the following feature: 

Definition 1 Oblongness is the ratio of the diameter of an undirected graph to the number of 
vertices. 

Figure 7.1 shows the dependency of the performance of efficient agent-centered search 
methods, such as AC-A*, on the value of the oblongness. In a certain sense this picture is 
the inverse to one shown in Figure 3.2 from Chapter 3, where we were gradually changing 
the density of the domain by adding undirected edges to a maze that initially was a tree. The 
diameter of the domain was shrinking along with the growing density - from being a constant 
fraction of the whole domain to becoming a square root of the number of vertices for the 
complete rectangular maze. In Figure 7.1 we go even further and continue adding edges until 
the domain becomes a complete graph. 

We confirm the relevance of the oblongness factor to the complexity of on-line search 
by considering a series of AI domains that have been studied in the literature. Our analysis 
of reversible AI domains identified three major groups of problems with drastically different 
oblongness. To make them comparable, we consider the following problems either with 0( N!) 
the size of the problem domain or adjust them to this size for scalable domains. 

1. Blocks World, Pancake and Burnt Pancake problems, Signed and Unsigned problems of 
Genetic Mutations by Inversion. In the Pancake problem the task is to sort an arbitrarily 
shuffled pile of pancakes of different sizes with a help of a spatula that can reverse the 
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Figure 7.1: The Efficiency of Agent-Centered Search and Oblongness 

sequence of pancakes from the top to the place of insertion. In the Burnt Pancake problem 
one should also preserve the proper orientation of all pancakes in the final sorted sequence 
(for example, burnt side down). In the Genetic Mutation problems one can create new 
mutations by extracting an arbitrary subsequence and reversing its order to transform 
the mouse's gene into the elephant's gene. In the signed version of the problem, both 
genes have all the proteins specifically oriented in the same sense as in the Burnt Pancake 
problem. 

2. y/N x vW-puzzle, SAT. The size of the SAT problem domain is 2N, to make it Q(N\), 
one should scale up the diameter of the problem by 0(log N). 

3. Planar mazes, Navigational problems. 

First group of problems has domains with the diameters of size 0(iV). The diameter of the 
'N x \/7V-puzzle is both Q(iV) and 0(poly(N)), the same is true for SAT. Third group has 

the biggest variety of oblongness values ranging from 1/\V\ to 1. Thus, first and second group 
of problems are located on the same side of the oblongness spectrum. Figure 7.2 shows the 
location of the problems relatively the range of the oblongness values of their domains. 

7.2   Complexity of On-Line Search 
Some search domains are so easy that arbitrary prior knowledge cannot mislead the search 
process completely. In such domains even Random Walk would easily find a goal. And this is 
not a coincidence, as we relate the "hardness" of search domains to the complexity of Random 
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Figure 7.2: Problems and their Oblongness Ranges. 

Walk on these domains. Throughout this thesis we consider reversible domains, where each 
action has an opposite (anti)-action. For the sake of simplicity, in this chapter we limit ourselves 
to undirected graphs that represent problem domains. 

Figure 7.3 demonstrate two extreme undirected graphs that are easy to search even without 
prior knowledge - almost a complete graph and a caterpillar with a long stem and short branches. 
Easiness of search in such domains comes from low cost of recovering from errors, in the former 
case an agent is always close to the goal, in the latter case short branches allow the agent to 
recover and come back to the stem in a relatively small number of steps. This is not accidental 
that these two extreme cases are coupled together. For a Random Walk that chooses at random 
any edge emanating from the current location, it takes 0(|V|2) in average to reach the goal 
from any starting vertex on these domains [52]. 

However, the expected time of reaching vertex w from vertex v in the lollipop graph 
presented in Figure 7.4 is &(\V|3) [52]. It shows that lollipop graphs and graphs with build-in 
lollipops might be hard domain instances for on-line search. The value of the oblongness factor 
for for the caterpillar is close to one, for the clique - 1/| V\, for the lollipop graph -1/2. These 
domains also confirm the correctness of our oblongness hypothesis. 

If one skips the heuristic update step in LRTA* algorithm (step 4 in Table 3.3) and heuris- 
tic values are the same for all vertices (edges), such "circumsized" LRTA* would coincide 
completely with Random Walk. Moreover, since in the beginning of on-line search the prob- 
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lern domain is not known, first agent's actions have to imitate Random Walk due to the limit 
of agent's knowledge about the domain, even according to more sophisticated on-line search 
algorithms. However, efficient agent-centered search methods use memory to keep already 
acquired knowledge about the domain, either completely or partially. The presence of such 
knowledge forces the flow of on-line search to deviate from Random Walk. 

However, since in its initial phase, on-line search is similar to Random Walk, it can be 
useful to overview a related work on Random Walk in undirected graphs. In their work on 
probabilistic algorithms [52], authors drew an analogy between a Random Walk on the graph 
and the resistance of an electric scheme, where each unit edge is replaced by a unit resistor. 
This is a nice example of cross-fertilization between the Probability and Electrical Network 
Theories. We introduced the oblongness parameter in Section 7.1. In the nest section, we 
overview the theory of Random Walk on undirected graphs to use it as an approximation of 
the agent-centered search procedures, to justify the correctness of the chosen feature and of the 
identified relation. 

Since the variety of algorithmic strategies amenable to on-line search does not allow to 
put all domain features under a common denominator, i.e. to relate exactly the complexity of 
search with the shape of the domain for every possible on-line algorithm, we limit ourselves to 
a more modest problem of the identification of relevant features and stating recommendation 
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on choosing efficient search algorithms. 

7.2.1   Resistive Networks 

If every undirected edge of the graph is replaced by a unit resistor (see two examples in 
Figure 7.5), then such an electrical scheme obeys Kirchhoff's and Ohm's Laws. Kirchhoff's 
Law interprets the electric current as an electric flow by stating that the sum of the currents 
entering a node in the network equals the sum of emanating currents. Ohm's Law regulates 
voltages, resistances and currents by stating that the voltage across a resistance equals to the 
product of the resistance and the current through it. 

Figure 7.5: Examples of Resistive Networks 

If a current of one amper is injected into node a in the left network example in Figure 7.5 
and removed from node c in this network, according to Kirchhoff's and Ohm's Laws: Half of 
the ampere of the current flows through the path abc, and the other half ampere through adc 
[52]. Interestingly, if we add an edge between nodes b and d, as shown in the right network of 
Figure 7.5, there is no current along branch bd due to the symmetry of the network and equal 
voltage levels at nodes b and d. 

Effective Resistance: The effective resistance Rab between any two nodes a 
and b in a resistive network is the voltage difference between them when one amper 
is injected into a and removed from b. 

Network Resistance: The network resistance R(G) for an arbitrary undi- 
rected graph is the maximum effective resistance for all pairs of nodes: R{G) = 
maxa,b£vRab 

As the networks in Figure 7.5 show, an additional edge does not always reduce the resistance 
of the network, although it never increase it. The opposite is also true: Removing an edge never 
increases the resistance, although it may remain the same after the removal. 
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The introduced "electrical" parameters can be utilized in establishing bounds for Random 
Walk. If we define the commute time Cab between two nodes a and b as the expected time 
for Random Walk starting at a to come back to a after visiting b at least once, the following 
theorem ties the value of the commute time with the effective resistance [52]: 

Theorem 7.1 For any two vertices a and b, the commute time Cab = 2\E\Rab. 

In on-line search an agent is supposed to reach the goal state. Since Random Walk is 
not goal-directed (it only approximates on-line search on earlier search stages), we might be 
interested in estimating the cover time C(G) - the expected time for Random Walk to visit all 
nodes of graph G including the goal node(s) [52]: 

Theorem7.2 \E\R(G) < C(G) < 2e3\E\R(G)ki\V\ + |V|. 

The diameter of the graph d determines the upper bound for the resistance, because the 
effective resistance Rab between nodes a and b is at most the distance between them distG(a, b). 
Hence, for any pair of nodes a and 6, the effective resistance Rab is at most d. Consequently, 
the network resistance of the whole graph R(G) is at most d. The cover time C(G) for such a 
graph is thus 0(\E\dln\V\). 

7.2.2   Simplifying the Estimates 

In Section 7.2.1 we showed that the expected time for Random Walk to visit all vertices of the 
graph is 0(\E\dIn \V|), where d is the diameter of the graph. The resistance of the network 
was used to derive this upper bound. Since the actual resistance is often much better than the 
diameter of the graph and this bound is asymptotically tight for dense graphs, for which the 
network resistance is much lower than the diameter of the graph, for our purposes we will omit 
the Inly |-factor. 

We would like to simplify the situation even further. The cover time for Random Walk 
has been shown to belong to the interval [\E\R(G),2e3\E\R(G)ln \V\ + \V\}. For a fixed 
number of vertices \V|, bigger number of edges \E\ implies lower expected resistance. This 
is may not be true for particular graph instances, but in average the resistance of graphs with 
bigger number of edges is lower than that of graphs with the same number of vertices and 
smaller number of edges. Since the actual resistance R(G) varies for different graphs and is a 
computationally-consuming parameter even for moderately sized graphs, for practical purposes 
we introduced another feature - oblongness - that seem to capture the complexity of on-line 
search. 

The motivation of this feature is the following: Both the number of edges \E\ and the 
resistance of the network R(G) grow linearly on the number of vertices \V\ for the same type 
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of graphs. Therefore, to make an estimate scalable over domains of different size, we should 
divide it by \V\Z. Furthermore, for the simplicity reasons, we substitute the product \E\R(G) 
by \V\d, where d is the diameter of the graph. The argument in favor of this substitution 
is that more edges reduce both the resistance of the network and the diameter of the graph. 
The presence of memory and the memorization process during on-line search improves the 
efficiency of search algorithms in comparison with Random Walk. Thus, we have to re-caliber 
the scale based on values of \E\R(G) anyway. In our estimate we reflect this by changing 
\E\R(G) for \V\d, which is a fair substitute for regularly structured on-line search problem 
domains. These simplifications imply exactly the definition of the oblongness parameter. 

7.3   Estimating Complexity of Planning Problems 

We were able to relate the complexity of specific search problem to the oblongness factor in 
Section 7.2, because for many considered problems the domains had a regular structure, the 
branching factor was within a certain interval, i.e. the number of available actions at every state 
was approximately the same. Many planning problems demonstrate the same property, the 
oblongness factor can be applied to them as well. However, for some planning problems, the 
value of the branching factor depends on the stage of the planning process. For example, while 
solving the iV-Queen problem, one can place the first Queen in any square of the chessboard. 
The more Queens are committed to squares, the less variants are left for the remaining Queens. 
Nonetheless, we would like to extend the relevance of the oblongness factor to such planning 
problems too. 

7.3.1   Using Oblongness to Compare Search Complexities 

Thus, according to Section 7.2, we can compare the complexities of on-line search problems by 
estimating the values of their oblongness parameters. We extend this comparison to planning 
domains and illustrate it through comparing the iV-Queen and the "Mutilated" Checkerboard 
problems. The domain of the TV-Queen problem contains iV2 squares, where one is supposed 
to place TV Queens. Hence, the size of the domain is roughly 

In the above estimate we ignore symmetries and allow non-feasible partial solutions, because 
some algorithms may use them too. The estimated length of the iV-Queen problem solution 
LQ is N. 
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The size of the "Mutilated" Checkerboard problem is approximately 

To make the comparison fair, we count intersecting configurations for SM too. The estimated 
length of the "Mutilated" Checkerboard problem solution LM is also N. When these two 
problems are considered for approximately the same size of the chessboard, for example N xN, 
then SM is significantly bigger than SQ, therefore Oblongnessi = LQ/SQ > LM/SM = 
Oblongness2. After the comparison of the oblongness values has been completed, we need 
to place problems in a proper oblongness spectrum region. It is easier to perform such a 
placing action for the "Mutilated" Checkerboard problem:  SM is approximately a half of 
EN    rii   _ r\N 

i=0 uiV — L   • 
Hence, if compared with the domains from Figure 7.2, the "Mutilated" Checkerboard 

problem should be placed between the BlocksWorld and SAT. The TV-Queen problem should 
be placed slightly further in the oblongness spectrum picture, between SAT and TV x iV-puzzle. 
Indeed, finding a solution for the iV-Queen problem is known to be a hard task, it was one of 
the problems that stimulated the development of backtracking methods in AI. 

In Chapter 7.2 we introduced the oblongness parameter and two threshold level that de- 
termine the expected complexity of on-line search. First threshold level Ob\ can be defined 
as containing problems with the diameters that are linear on some parameter N and domains 
of size N\. Second level Ob2 determines the problems that are easy in navigating, although 
their diameters are relatively large. For problems of this type, the diameter spans a big portion 
of the domain. Thus, Ob2 can be defined as a constant close to one. For the problems with 
the oblongness value below Obi or above Ob2, even non-monotone, non-admissible heuristics 
could be utilized efficiently, if they provide at least some "guidance" towards the goal. For 
domains with the oblongness values within the interval between Obi and Ob2, the "quality" of 
heuristics is crucial, as it determines the efficiency of search algorithms. 

We do not determine what the term "quality" means regarding heuristic values, because for 
different approaches it can possess completely different meanings. For example, for off-fine 
search, the "quality" of the heuristic would mean how close the heuristic values are to the 
goal distances. For on-fine search, it is more important to have heuristic values balanced with 
respect to guiding a physical or fictitious agent towards the goal. Furthermore, distinct on-line 
search algorithms need different type of guidance. In our experiments with planar mazes we 
found that the Manhattan distance is more misleading for LRTA* than the MAX(X,Y)-distance, 
whereas for AC-A* algorithm it is exactly the opposite. 

With respect to deterministic planning problems, we relate the complexity of building a 
feasible plan with the expected length of the plan and the size of the planning domain. In 
this estimate we assume that the length of the plan is of the same order as the diameter of the 
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graph representing the planning domain. Thus, the search entropy is similar to the oblongness 
parameter of search problem domains. 

There exists another reason of splitting search problems into ones with the oblongness 
value within the interval [Obi, Ob2] and out of it. Polemics on the difference between human 
reasoning and computer-oriented proofs, see for example [68,63,30], tend to place the strength 
of human reasoning in either "easily" navigated, highly connected problem domains, where a 
human does not need extensive modeling of all the contingencies and is able to recover from 
making mistakes "en-route," or heavily constrained domains with few branching points. The 
domains of the intermediate type with a lot of branching and "costly" recovery from making 
wrong decisions are amenable to computer-oriented search. 

Another example of domains with highly variable oblongness comes from regulating de- 
partmental schedules: The "secretarial" task of assigning conference rooms is easy in the case 
when a department has an abundance of rooms. If there exists a unique room, this task can 
be also resolved on the "first to come - first to serve" basis. When the number of conference 
rooms does not easily satisfy the number of incoming requests, scheduling meetings becomes 
a challenging task [7]. 

7.3.2   Using Oblongness in Agent-Centered Search 

The classification of problem domains based on the value of their oblongness value has an 
impact on the efficiency of agent-centered search. Recall, in agent-centered search a physical 
or fictitious agent has limited lookahead, and agent's actions form a continuous path through 
the problem domain. 

Several off-fine planning problems have been solved by introducing a fictitious agent and 
artificially limiting its lookahead by the immediate neighbors of the current state. Those 
problems have common features: Their oblongness parameter lies near or slightly above the 
Obi boundary. The further the the value of the oblongness exceeds Obi, the more necessity 
is for careful selection of prior knowledge. Further increase of the oblongness leads to a 
strict dependency of the efficiency of agent-centered search on the "quality" of the prior 
knowledge guidance, unless the domain approaches the caterpillar-like shape with the value of 
the oblongness being a constant close to one. 

Thus, to estimate the efficiency of agent-centered search for a particular problem, one 
should just figure out the oblongness factor of the problem domain. Based on such an estimate, 
the need for better heuristics becomes urgent for moderately "oblong" domains. For off-line 
problems of this type, standard non-agent-centered techniques of "teleporting," rejecting partial 
solutions and "island search" can be more efficient than applications of agent-centered guided 
by skewed heuristic values. 
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7.4   Promising Directions for Cross-Fertilization 

In this section we consider both method-driven and problem-driven hybrid approaches and sug- 
gest hints on building new successful examples of hybrid algorithms or untraditional application 
across distinct disciplines. 

7.4.1 Problem-Driven Cross-Fertilization 

Recall that problem-driven type of the hybrid approach starts with the problem that one is 
supposed to solve. This is, probably, the most realistic practical application of the hybrid 
approach. According to the methodology presented in Chapter 1, in such a case one should 
begin with identifying methods from different scientific areas that are relevant to the problem 
under investigation. This phase is based solely on the experience of the researcher, we cannot 
suggest valuable hints on selecting relevant methods besides trying to be creative and keeping 
all methods that can somehow relate to the given task. 

Given a particular problem, one is usually interested in the efficiency of its solution. Very 
often different methods are focused on different types of efficiency, sometimes their foci 
are contradicting. For example, reasonably risky algorithms can establish strong empirical 
performance, but lose to more cautious ones in the worst-case. Even more risky procedures can 
be sharply focused on specific problem domains and lose a lot when the domain is changed. 
There also exists a difference between the complexity of deriving the solution and the complexity 
of the solution itself. Some real-time algorithms can guarantee the convergence, but the 
solutions that they construct may be much worse than ones obtained by more computationally 
expensive procedures. 

7.4.2 Hints on Building Hybrid Solutions 

One of the possibilities for the hybrid approach is to combine methods with different efficiency 
foci in a single hybrid framework. Usually "cautious" procedures that provide worst-case 
guarantees, search the problem domain methodically without leaving a room for an uncontested 
opportunity. They do it either by chopping off guaranteed portions of the domain or by repeating 
certain steps. 

A good opportunity for the Constructing Hybrid Algorithms phase is to relax one of such 
"cautious" procedures. It can be done, for example, through mixing its steps with more risky, 
more efficient in average (or for this type of problems) procedure by executing steps of the 
"cautious" procedure every so often. In this case, it will still chop off guaranteed portions of 
the domain, the described combination with another procedure would only offset its guarantees 
by a constant. In other cases, a "cautious" procedure may contain an obvious or a hidden 
parameter that can be relaxed to allow this procedure to be combined with another algorithm. 



7.4. PROMISING DIRECTIONS FOR CROSS-FERTILIZATION 117 

This was exactly the case with designing VECA, where instead of immediate backtracking 
we introduced parameter k and allowed the algorithm to traverse edges repeatedly without 
penalizing its actions until k traversals. 

In Chapter 7 we discussed the relation between some features of the problem domain and the 
efficiency of search. We introduced oblongness as a simple feature of the domain that seems to 
capture the search complexity. By estimating the value of this feature for a particular problem 
domain, one gets a clear picture about the need in prior knowledge and the type of methods that 
can be applied efficiently to solve this problem. Some off-line search or deterministic planning 
problems can be solved effectively by agent-centered methods, i.e. by introducing a fictitious 
agent with limited lookahead (for the efficiency purposes) and forming a continuous path to the 
goal state through the problem domain. As we concluded in Chapter 7, such problem domains 
should have either very low or very high values of their oblongness, or the heuristic values 
should provide an excellent guidance towards the goal. 

Another direction for the problem-driven hybrid approach is to combine some of the methods 
amenable to the discussed with known strong methods from other Sciences that are not tradi- 
tionally related to the problem. In the next section we overview some of such non-traditional 
applications across different disciplines. 

7.4.3   Method-Driven Hybrid Approach 

Unlike the problem-driven hybrid approach, the method-driven approach starts from having 
methods already selected. Although those methods may come from distinct Scientific areas, 
can use very different vocabularies and even solve different problems, the intersection of their 
task directions should hint multi-disciplinary researchers on applying them in a beneficial way. 

Our experience shows that the more difference between those methods are, the more exciting 
can the result of Classification or Constructing Hybrid Algorithms phases be. However, 
bigger difference between the selected methods imply possibly much more work in Creating 
the Environment and Analysis phases, success of which, in its turn, can result in a big payback 
from the concluding Constructing Hybrid Algorithms phase. 

In this section we present hybrid applications that involve two drastically different principles 
from Mechanical Physics and Mathematics, namely the perpetual motion and Binary Division. 
These principles belong to the basis of both disciplines. Nonetheless, hybrid applications that 
include these principles, provide nice visual interpretations to otherwise cumbersome solutions. 

Perpetual Motion 

Even such a "non-computational" concept as the perpetual motion can be utilized in the hybrid 
approach.  We introduce a geometrical problem that seems not to relate directly neither to 
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Physics, nor to Mechanics.  However, a simple and nice reduction to the perpetual motion 
elegantly establishes the desired property. 

Consider a convex 3D polyhedron. Every internal point may be projected either onto the 2D 
face of the polyhedron or on the extension of the face. Figure 7.6 shows a 2D slice containing 
the point in the case when the projection is located on the extension of the polyhedron's face. 

Definition 2 Internal point of a convex polyhedron is stable, if there exists a face of the 
polyhedron, such that this point is projected onto this face. 

Theorem 7.3 All internal points of a convex 3D polyhedron are stable. 

Proof: Suppose that there exists a point, which is not stable. Make a firm model of the 
polyhedron with the mass center at the point under investigation. Put this model on an even 
surface. If none of the projections of this point get onto a face of the polyhedron, such a model 
would perform the perpetual motion over the surface, which is not possible.   ■ 

Proj(M) 

Figure 7.6: Projection of the Mass Center on the Face of a Polyhedron 

Binary Division in Evaluating Sums of Two Arrays 

Binary Division is another simple, but powerful principle that can be easily overlooked in 
designing optimal algorithms. In this section we describe applications of Binary Division in 
two optimal algorithms solving the Two Array Sums problem and Random Access Memory 
(RAM) troubleshooting. Recall, Binary Division uses the minimum number of binary queries 
to select the desired element out of a set with complete order. 
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Two Array Sums Problem: For how many pairs of indices (i, j) the relation 
A[i] + A[j] < B[i] + B[j] holds, where A and B are two equi-sized arrays of real 
(not necessarily positive) numbers. 

If we denote the size of arrays as N, the number of pairs of indices is N(N — l)/2. The 
brute-force solution that accounts all such pairs would have a quadratic complexity. However, 
an application of Binary Division cuts down the complexity of the Two Array Sums problem 
to 0(N log N), as the following theorem shows: 

Theorem 7.4 The worst-case complexity of the Two Array Sums problem is 0(N log N). 

Proof: Consider third array C of the same size N, which is the difference of A and B: 
C[i] = A[i] — B[i] i = 1,..., N. With the help of array C we reduce the two-array problem 
to a single array problem, since A[i] + A[j] < B[i] + B[j] implies A[i] — B[i] < B[j] — A[j], 
which in its turn implies C[i] + C[j] < 0. 

With array C we perform the following counting procedure: 

1. Sort all elements of array C. 

2. Apply Binary Division for each i = 1,..., AT to determine k{ - the number of indices j, 
so that C[j}<-C[{\. 

3. Sum up ki i = 1,..., N. 

Steps 1 -3 require only O (N log JV)J - the complexity of step 1 (sorting) and step 2(N Binary 
Divisions). 

Within the same counting procedure, we accomplished even more than promised: For every 
fixed index i e [1, A7"], we counted the number of indices j, so that C[i] + C[j] < 0, which is 
equivalent to A[i] + A[j] < B[i] + B[j}. 

To prove that 0(N log N) is tight, we reduce the Two Array Sums problem to sorting: If we 
set C[i] i = 1,..., N so that negative elements are alternating with the negations of positive 
ones, and positive elements are alternating with the negations of negative ones (for example, 
{—2&, — 2k — 2,..., —2,1,3,..., 2k — 3,2k — 1}), then counting the number of indices j 
satisfying C[i] + C[j] < 0 for every i = 1,..., N is equivalent to sorting the array C, because 
for every fixed index i this number is different and corresponds to the order of this element in 
the array.   ■ 

Moreover, all steps can be parallelized, the same procedure can be performed in O(logiV) time by ./V 
processors. 
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Binary Division in RAM Troubleshooting 

Random Access Memory (RAM) became an essential part of the hardware design. Higher 
degree of integration allows to place larger memory configuration on the same physical space. 
However, closer placement of memory transistors make them vulnerable to affecting each other, 
thus destroying information that memory cells are supposed to keep. Typical memory faults on 
the cell level are: 

• Inability of a particular cell to store a low or high level (0/1 bits). 

• Pairwise influence of memory cells. 

Hence, for RAM troubleshooting one is supposed to check that both low (0) and high (1) 
levels can be written to and read from every cell, that all four combinations of low and high 
levels can be written to and read from all possible pair of cells, since a particular layout of 
the chip can place distant memory cells (in terms of the address space) as physical neighbors. 
Second requirement seems like demanding a lot of writing and reading tests. However, we 
show that an application of Binary Division can significantly cut down the amount of writes 
and reads. We show that for the simplest case of register memory that can be easily generalized 
for arbitrary RAM configurations. 

Theorem 7.5 Troubleshooting N registers requires 0(log N) writes and reads. 

Proof: We assume that all N registers can be accessed simultaneously, i.e. in a single write 
we can attempt to change values of any of them, during a single read we get stored information 
from all registers. Figure 7.7 illustrates an application of Binary Division to troubleshooting 
N registers. Exactly 2(logAr + 1) writes and reads are needed to check whether all pairs 
of registers can store all possible pairs of low and high levels, during the last two write/read 
tests, all but two cells can be assigned arbitrary values (highlighted in golden color). Thus, the 
complexity of troubleshooting N registers is 0(log N).   m 

7.5   Summary 
In this chapter we considered the efficiency of solving search and planning problems and 
attempted to relate some features of the problem domains with the complexity of on-line 
search. We argued that the complexity of on-line search in a certain sense is similar to random 
walk, we finked our new introduced parameter with relevant on-line search techniques of 
different nature. These facts allowed us to bring already developed theory about the expected 
complexity of random walk and confirm the correctness of the novel feature. 
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Figure 7.7: Troubleshooting N registers 

We went through a sequence of simplifications, because we wanted to consider problems 
of different sizes, and, hence, to come up with a parameter that could be easily calculated in 
order to estimate the expected complexity of on-line search problems. Since search methods 
are very different in their nature, and the dependency of their efficiency on heuristic values 
varies from one method to another, we were interested only in approximate estimates. Such 
an estimation is expected to result in recommendations on method selection, whether to spend 
an extra effort on coming up with "high-quality" heuristics or acquiring more prior knowledge 
about the domain, on setting up internal parameters of search procedures, etc. 

We found that the oblongness parameter captures well the complexity of search. It is a 
simple parameter of the problem domain that splits the domains into three categories. According 
to two threshold levels Obi and Ob2, problems with the values of the oblongness between these 
levels are complicated search problems that require prior knowledge with strong guidance 
towards the goal(s). On the other hand, problems with the values of the oblongness outside the 
interval [Obi, O&2] can rely efficiently on heuristic values even with a "weak" guidance. For 
problems of this kind, even a non-monotone, non-admissible heuristic that reflect "common 
sense" for distantly related types of problems is likely to guide the search process efficiently. 

In Section 7.4 of this chapter we considered both the problem-driven and method-driven 
hybrid approaches and stated a series of hints on building successful hybrid applications. 
Besides providing various examples of untraditional interdisciplinary applications that involve 
basic principles from distinct areas of Science, this chapter also states suggestions on how one 
can actually build hybrid algorithms, and how to utilize the results from Chapter 7 and attack 
on-line/off-line search/planning problems by agent-centered methods. 
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Chapter 8 

Conclusions 

In this thesis work we introduced the methodology of the inter-disciplinary hybrid approaches 
to solving various groups of problems from different areas of Sciences. We focused the de- 
velopment specifically on hybrid algorithms between Artificial Intelligence, CS theory and 
Operations Research. Such an approach enabled us to achieve the mutual enrichment and 
better understanding of many efficient methods that can be applied across distinct disciplines. 
Enlightened by new vision that comes from multi-facet consideration, we were able to solved 
several open problems by improving the worst-case and/or average-case (empirical) complex- 
ities, in some cases we performed competitive analysis and concluded with the directions of 
beneficial using known techniques. 

Two methods of deriving upper bounds for the values of combinatorial optimization problem 
solutions - the Pigeonhole Principle and Linear Programming Relaxation - appear to have the 
same bounding power. Whatever established by either of them, can be derived by the other 
one. Moreover, these two methods are dual to each other in the sense of Linear Programming. 
Nonetheless, traditional applications of the Pigeonhole Principle carry more intuitive sense and 
indicate whether the upper bound is tight, whereas Integer Programming Relaxation can be 
applied automatically to any instance of Integer Programming problem. The latter approach 
provides an alternative way of solving combinatorial optimization problems. 

For the goal-directed exploration problem we proposed a new systematic, application- 
independent framework, called VECA. VECA can accommodate a wide variety of exploitation 
strategies that use heuristic knowledge to guide the search towards a goal state. VECA monitors 
whether the heuristic-driven exploitation algorithm appears to perform poorly on some part of 
the state space. If so, VECA forces the exploitation algorithm to explore the state space 
more. This way VECA combines the advantages of both pure exploration approaches and 
heuristic-driven exploitation approaches: It is able to utilize heuristic knowledge, but, as 
opposed to existing heuristic-driven exploitation algorithms, it provides a good performance 
guarantee: Its worst-case performance over all state spaces of the same size - no matter how 
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misleading the heuristic knowledge is - cannot be worse than that of the best uninformed 
goal-directed exploration algorithm. Thus, VECA provides better performance guarantees than 
previously studied goal-directed exploration algorithms, such as the AC-A* algorithm. Our 
experiments showed that this guarantee does not come at the cost of a deterioration in average- 
case performance for many previously studied exploitation algorithms: In many cases when 
used in VECA, their performance even improved. 

I considered future work throughout the thesis, the concentration of hints and ideas to be 
discussed in future can be easily found in Chapter 7 on further insights into on-line complexity. 
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